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Abstract
In this article, we propose a theoretical framework that characterizes the range of out-

comes in empirical studies, depending on the nature and number of design choices that
researchers make. We provide a simple method that evaluates if particular choices have a
significant impact on the distribution of these outcomes. We also discuss ways to exploit
multitudes of such outputs (e.g., t-statistics and p-values) in order to improve the robust-
ness and validity of empirical conclusions. Our ideas are illustrated via an exercise of equity
premium prediction in which we conclude that net equity expansion and the book-to-market
ratio are solid predictors of the aggregate excess return.

1 Introduction
“Because the empirical economist must deal with nature in all her complexity, it is optimistic in the
extreme to hope or believe that standard parametric economic models or probability models are sufficiently
adequate to capture this complexity.” - White (1996)

Empirical studies are built on many choices. Recently, two separate studies (Huntington-
Klein et al. (2021) and Menkveld et al. (2021)) have revealed that, given the same replication
task, independent researchers can reach vastly different conclusions, including on trivial items
such as sample sizes. Such divergences are the consequence of the large number of design options
that are left to the appreciation of the empiricist.1 Examples of these choices are for instance
listed in Mitton (2021b) for the field of corporate finance.

In the best case scenario, minor shifts will lead to small adjustments, and solid conclu-
sions will not be altered. Nevertheless, sometimes, articles may inspire policy choices based
on erroneous findings (Reinhart and Rogoff (2010)), or be retracted because the results can be
contradicted or are simply not robust enough (Rampini et al. (2021)).2 The replication of results
has become a strong imperative in modern research, so that data and code sharing policies have
for instance been enforced in most major journals in finance and economics.3

∗EMLYON Business School, 23 avenue Guy de Collongue, 69130 Ecully, FRANCE. coqueret@em-lyon.com
1An enlightening exercise is provided by FivethirtyEight, in its Science is not broken article, in the political

science discipline.
2Retractions are closely followed by a handful of researchers (https://retractionwatch.com) who have

compiled and update a database of scientific articles that have been retracted from their journals:
http://retractiondatabase.org

3In finance, we can list: Journal of Finance, Review of Financial Studies, Journal of Financial Economics,
and Review of Finance. In economics, there are at least the following: Econometrica, journals of the American
Economic Association (including the American Economic Review), Quarterly Journal of Economics, Review of
Economic Studies.
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The sensitivity of results to design choices is well-known in the research community, which is
why many papers incorporate robustness checks in which analyses are replicated with small al-
terations in the original empirical protocol. For instance, researchers can reproduce their results
on sub-samples, or with alternative estimators, or when testing different values in parametric
methods and techniques.

Given the publication bias towards positive results,4 authors can be, knowingly or not,
incentivized to produce low p-values in order to demonstrate that their results are significant,
and hence, worthy of publication.5 Equipped with a large palette of adjustments (i.e., leeway)
in the research designs, researchers may be tempted to mostly report those that will increase
odds of acceptance by journal editors.

The troubles of false discoveries are also potent and problematic outside academia. In the
money management industry, quantitative researchers compete to discover profitable trading
strategies. Unfortunately, many of the latter which perform well in-sample end up disappointing
out-of-sample (Bailey et al. (2014), De Prado (2018), Chen and Velikov (2021)). This has spurred
a debate on whether there is a crisis of reproducibility in the field (Bailey and Lopez de Prado
(2021), Chen (2021), Harvey and Liu (2021) Harvey (2021)) - and this debate is also ongoing in
the medical sciences (see Ioannidis (2005) and Leek and Jager (2017), as well as the discussion
in Fanelli (2018)). These issues have prompted the research community to propose identification
and detection methods for false discoveries and p-hacking (Simonsohn et al. (2014a,b), Elliott
et al. (2021)), and even solutions via correction measures (Andrews and Kasy (2019)), noise
(Echenique and He (2021)), or Bayesian publication decisions (Frankel and Kasy (2022)).

In the present paper, similarly to Fabozzi and de Prado (2018), we argue that one solution,
albeit a costly one, is to report the outcomes of a large number of forking paths in empirical
studies. Large scale experiments are for example also advised in Milkman et al. (2021) in
the field of behavioral science. This is likely to dramatically increase the transparency of the
research process and to strengthen the robustness of findings. Unfortunately, this is only feasible
under two conditions. First, the number of research hypotheses must be small, because the
corresponding results cannot be presented succinctly, e.g., with one or two numbers, as is often
the norm with a coefficient estimate along its t-statistic. The second condition pertains to
computation times. Some empirical protocols are resource-intensive and cannot be duplicated a
large number of times, each time with a minor alteration.

Our recommendation is built on the modelling of the research process as an iteration of
mappings, akin to a feed-forward neural network structure. As long as mappings are somewhat
continuous, their compositions can also be characterized as continuous. Hence, small shifts in

4This phenomenon, also known as the file drawer problem, has been widely documented in many fields, espe-
cially psychology (Rosenthal (1979)), medicine (Dickersin et al. (1987), Begg and Berlin (1988), Olson et al.
(2002) to cite only three references), economics (Leamer and Leonard (1983), De Long and Lang (1992), Stanley
(2005), Doucouliagos and Stanley (2009), Doucouliagos and Stanley (2013), Brodeur et al. (2016), Ioannidis et al.
(2017), Brodeur et al. (2020) and Kasy (2021)), finance (Lo and MacKinlay (1990), Harvey (2017), Morey and
Yadav (2018) and Harvey and Liu (2021)), and accounting (Chang et al. (2021)). A related issue is bias in
research (Fanelli et al. (2017)).

5The topic of p-hacking is now widely documented in many fields since the seminal work of Sterling (1959),
and we point to a few articles on the matter, among many others: Head et al. (2015), and Christensen and Miguel
(2018).
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inputs or choices, at any stage in the process, are expected to yield minor changes in the final
results. Furthermore, if design decisions are viewed as (or parametrized by) random variables,
the reporting of many outcomes (t-statistics, p-values, or other metrics - see Mitton (2021a) for
further examples) provides a much richer characterization of the effects under investigation.

The generation of multiple outputs, based on small variations of similar datasets, shares
some similarities with re-sampling techniques, as well as data augmentation and bagging, all of
which are sometimes used in machine learning. The premises is that a model which relies on
a diversified set of sub-models will benefit from a wisdom of the crowds effect, as long as each
individual model is relevant (loosely speaking) and that correlations between models are not too
high. The best situation is when diversification operates and outcomes of forking paths reveal
complementary facets of the initial problem. These ideas have blossomed in the frequentist
(Hansen (2007), Zhang (2015), Zhang and Liu (2019) and Zhu et al. (2021)) and Bayesian
(Draper (1995), Raftery et al. (1997)) circles. For instance, Bayesian averaging has recently
been used in Avramov et al. (2022) to cope with model uncertainty. We refer to Steel (2020) for
a survey on model averaging in economics.

In addition to improving the robustness of reported results, framing empirical work as suc-
cessive mappings helps organize code more neatly into a well-structured research pipeline. Each
mapping has its own module, which opportunely prevents potential errors in lengthy scripts
written in one block. It also forces to reflect upon the computational cost of each step of the
research project and how to optimize it.6 Consequently, an exhaustive approach to the reporting
of results forces the analyst to focus on the first order choices of the research process and to
filter out the unnecessary artifices.

We illustrate our framework and recommendations with a study on the prediction of the
equity premium, a well-documented research question in financial economics. We consider a
large number of ways to run the empirical protocol and report the distributions of test statistics.
The latter allow us to determine which design choices alter the average of the statistics and are
hence strong drivers thereof. Under technical assumptions on the dependence between p-values,
it is possible to approximate the average rejection rate of the null. While this remains an
imperfect metric, it is arguably one that is more compelling than a single p-value.

The remainder of the paper is structured as follows. Section 2 lays out a static represen-
tation of research studies as compositions of operators. Many examples of such mappings are
presented therein. In Section 3, we introduce randomness into the operators, thereby implying
that researchers can randomly choose between options, i.e., what we refer to as forking paths.
We propose a way to characterize which of those are significant for a given research output.
Section 4 presents our numerical application on the prediction of the equity premium. Finally,
Section 5 concludes.

6Even if modern computers allow for the parallelization of tasks, the complexity of most pipelines outweigh
the CPU (and GPU/TPU) capabilities of standard machines. This is likely to limit the exploration of potentially
promising but untested questions and configurations.
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2 Deterministic framework: compositions of Lipschitz operators
We start with a few comments on notation. This section relies heavily on norms. For vectors,
we work with Lp norms: ‖v‖pp = ∑N

n=1 |vn|p and for (N × K) matrices we will consider the
following:

• ‖M‖22 = ∑N
n=1

∑K
k=1M

2
n,k: Frobenius Norm;

• ‖M‖1 = max
k

∑N
n=1 |Mn,k|: maximum absolute column sum;

• ‖M‖∞ = max
n

∑K
k=1 |Mn,k|: maximum absolute column row.

Unless otherwise stated, the integer N will always be the length of the vectors and the number
of rows of matrices. Henceforth, lowercase bold letters d = {d1, . . . , dN} will denote vectors and
uppercase bold letters matrices or tables. For the latter, we adopt the tidy data convention of
Wickham (2014): rows are observations and columns are variables. Finally, we will sometimes
(when there is little ambiguity) use the simplified notation f(d) for the vector [f(d1), . . . f(dN )].
Moreover, of a matrix M or a vector v, M ′ and v′ will denote their transpose.

In addition, we will often compare two alternative inputs. Readers are accustomed toX and
y for modelling purposes. To avoid any confusion, we work with the letters D and D, which will
stand for two versions of some data that is collected by the researcher. This choice of notation
is disconcerting at first, but imperative because we will resort to the X and y letters for linear
models later on.

2.1 Theory

We assume that the empirical part of research process starts with some input which we call D
and can be thought of as the initial version of the data that is collected. The empirical study
is modelled as a sequence of operations fj that occur successively so that the reference research
output (e.g., one t-statistic) is such that

oJ(D) =
[
©1
j=Jfj

]
(D) = fJ ◦ fJ−1 ◦ · · · ◦ f1(D), (1)

where fj : Sj 7→ Sj+1, with S1 and SJ+1 encompassing the sets of feasible input D and output
values, respectively. For simplicity, we can assume that oJ is simply a real number, but it may be
a more complex object (e.g., a vector (confidence interval), or a matrix). The index J indicates
that the output is the result of J successive operations, which Gelman and Loken (2014) refer
to as forking paths.

One interesting question pertains to the sensitivity of the output oJ to a change in initial
input D. In order to derive theoretical results, we must impose some conditions on the mappings
fj and we choose to work with Lipschitz smoothness. More precisely, we assume that for
D,D ∈ Sj , there exists some constant cj > 0 such that

‖fj(D)− fj(D)‖ ≤ cj‖D−D‖, (2)
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for some norms which are implicitly defined on Sj+1 and Sj . Given the number of norms we will
use subsequently, specific notations would be cumbersome. We recall that when inputs belong
to Rn, we will work with the Lp norms: ‖d‖p = (|d1|p + . . . |dn|p)1/p.

In all generality, the object D can comprise several data types, categorical features notably
(ordinal or nominal). Handling distances with such features is complex, though not impossible
(see Boriah et al. (2008)), but for the sake of simplicity, the exposé will often assume that D is
a matrix of real numbers.

Composing two operators yields

‖fj+1 ◦ fj(D)− fj+1 ◦ fj(D)‖ ≤ cj+1‖fj(D)− fj(D‖
≤ cjcj+1‖D−D‖.

Iterating this inequality leads to

∥∥∥[©1
j=Jfj

]
(D)−

[
©1
j=Jfj

]
(D)

∥∥∥ ≤ ‖D−D‖ J∏
j=1

cj . (3)

More generally, the accumulation of shifts may not start at the initial data sample D, but at
a later stage, say at oK , after K steps, for K < J . It is easy to prove the following lemma.

Lemma 1. If oJ is given by Equation (1) and the mappings fj satisfy (2), then for 1 ≤ K < J ,

∥∥∥[©K+1
j=J fj

]
(oK(D))−

[
©K+1
j=J fj

]
(oK(D))

∥∥∥ ≤ ‖D−D‖ J∏
j=K+1

cj . (4)

It is obvious that the constants cj are the main drivers of the error bounds. In practice,
a lower bound for the cj is often 1, meaning that their compounded effect can be sizeable,
theoretically, especially if many cj are such that cj � 1. Thus, adding steps in the design
increases the amplitude of the difference between outcomes. In the remainder of the section, we
provide many illustrations Lipschitz constants. Few are exactly sharp and in some cases, they
even depend on D or D.

2.2 Examples: descriptive statistics

Sample moments and other mainstream metrics play an important in empirical studies. We
begin our journey of illustrations with the simplest of them all: the sample mean. In the sequel,
we will use the notation f as generic mapping. For example, if f is the sample mean operation,
we have, via Hölder’s inequality in the last inequality,

‖f(d)− f(d)‖p =
∣∣∣∣∣ 1
N

N∑
n=1

dn −
1
N

N∑
n=1

dn

∣∣∣∣∣ ≤ 1
N

N∑
n=1
|dn − dn| ≤ N−1/p‖d− d‖p, (5)
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so that in this case the Lipschitz constant is N−1/p. The case of the (biased) sample variance
is more tricky:

‖f(d)− f(d)‖p =

∣∣∣∣∣∣ 1
N

N∑
n=1

(
dn −

1
N

N∑
n=1

dn

)2

− 1
N

N∑
n=1

(
dn −

1
N

N∑
n=1

dn

)2∣∣∣∣∣∣
= 1
N

∣∣∣∣∣N(d̄2 − d̄2) +
N∑
n=1

d2
n − d2

n

∣∣∣∣∣
= 1
N

∣∣∣∣∣N(d̄− d̄)(d̄+ d̄) +
N∑
n=1

(dn + dn)(dn − dn)
∣∣∣∣∣

≤ |d̄ + d̄| × |d̄− d̄|+ d∗

N

∣∣∣∣∣
N∑
n=1

(dn − dn)
∣∣∣∣∣

≤ cp‖d− d‖p, (6)

where cp = N−1/p(|d̄ + d̄|+ d∗), with d∗ = maxn |dn + dn|. d̄ and d̄ are the sample means. The
last inequality comes from (21). In this case, and as will be recurrent, the constant depends
on the magnitude of the series. To remove this dependence, it is imperative to specify some
properties of the vectors (e.g., if they belong to the unit sphere, or if their range is restricted
to particular intervals). This comment holds for the remainder of the paper, as many constants
will be input-dependent below.

Typically, for the sample covariance, we have that

|f(d1,d1)− f(d2,d2)| = |(d1 − d̄1)′(d1 − d̄1)− (d2 − d̄2)′(d2 − d̄2)|
= |(d1 − d̄1 − (d2 − d̄2))′(d1 − d̄1)− (d2 − d̄2)′(d2 − d̄2 − (d1 − d̄1))|

≤ ‖d1 − d̄1‖1
N

(|d1 − d2|+ |d̄1 − d̄2|) + ‖d2 − d̄2‖1
N

(|d1 − d2|+ |d̄1 − d̄1|)

which is again a similar form.

Let us now mention the maximum of vectors. We have that

max
n

dn = max
n

[dn − dn + dn] ≤ max
n
|dn − dn|+ max

n
dn,

so that

‖max
n

dn −max
n

dn‖∞ = |max
n

dn −max
n

dn| ≤ max
n
|dn − dn| = ‖d− d‖∞,

i.e, the Lipschitz constant in this case is one. Straightforwardly, the same applies to the minimum
operator.

2.3 Other examples of Lipschitz constants

In empirical studies, the data collection stage is the hardest to model, because of its hetero-
geneity. It can be quite constrained if data comes from a provider (e.g., WRDS, Bloomberg,
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etc.), in which case the researcher has a few degrees of freedom: which variables to import, for
which universe, at which frequency, over which time frame, etc. Providers often update their
data so that downloading a sample at two different periods may generate discrepancies if series
are not kept point-in-time. This has been recently shown for the Fama-French factors in Akey
et al. (2021). There is also relatively little room for initiative in economics or physics when
working with official series, such as GDP output, inflation, unemployment, CO2 concentration,
temperatures, etc.

However, when the study is based on surveys, the researcher has more latitude, and we for
instance refer to the guide of Bergman et al. (2020) for an overview of the range of options in
that case. In qualitative studies, there is also an important coding phase (see, e.g., the review
by Basit (2003)), which is difficult to model neatly and efficiently.

For all these reasons, we commence this section with the step that comes right after data
collection, namely data cleaning. We underline that Mitton (2021b) reports that “the method-
ological decisions that affect statistical significance the most are dependent variable selection,
variable transformation, and outlier treatment”. In this subsection, we tackle all of these ele-
ments. Lastly, the purpose of the section is to show that most classical operations on data can
be represented as Lipschitz mappings. It is not to provide sharp constants for these mappings.

2.3.1 Data cleaning

The first issue that most, if not all, researchers encounter, is missing data. When working with
time-series, a common practice is to impute with the most recent well-defined point prior to the
missing value, if it exists. Interpolation is usually avoided because it introduces a forward-
looking bias. In this subsection, to ease the exposition, we make strong assumptions on the
vectors on which the imputation mapping will operate.

Formally, we consider two vectors d and d such that S is the common set of indices for which
a value is missing. The fact that S is common to the two vectors comes from the fact that we
need ‖d−d‖ to be well defined. In the above norm, two points that are not defined are assumed
to be equal, but if one value is defined and the other is not, there is no unambiguous way to
proceed. For simplicity, we assume that 1 does not belong to the S set, so that the imputation
values will always be defined. In addition, we impose that the indices in S are never consecutive
numbers, though this assumption can be relaxed easily. We then have

‖f(d)− f(d)‖pp =
∑
n∈S
|dn−1 − dn−1|p +

∑
n/∈S
|dn − dn|p ≤ 2‖d− d‖pp

where the last inequality comes from the fact that the values that precede missing points get
counted twice. The Lipschitz constant is not very sharp in this case.

Other examples of methods include cross-sectional imputation, whereby a missing value is
replaced by the cross-sectional mean (or median) across other observations. In this case, via
inequality (21) it is also possible to derive a Lipshitz constant for mean-driven imputation.
Parametric imputation based on some distributional assumption follow the same logic, though
their treatment is substantially more involved.
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One extreme solution when facing missing data is simply the removal of observations. To
illustrate this issue, we consider two matrices of numerical data D, D with equal sizes, N rows
and M columns. In line with the above assumptions, we write S for the (common) indices of
their rows which contain missing points. Naturally, we again assume that the cardinal of S is
much smaller than the total number of rows N . In this case, it is straightforward that for the
usual matrix norms (Frobenius, ‖ · ‖1 and ‖ · ‖∞), the Lipschitz constant is one at most, i.e.,
that

‖f(D)− f(D)‖ ≤ ‖D−D‖.

Similarly, the researcher may want to remove columns (instead of rows) of the data because of
co-linearity issues. The Lipschitz constant of such an operation is also one at most.

Another important stage in data processing is outlier management. One of the most
frequently used tools to this purpose is winsorization, whereby extreme values are replaced by
given quantiles, often at the 1% and 99% levels.

Without loss of generality, let us assume that the vector d is ordered, i.e., that d1 < · · · < dN .
For a given integer k � N/2, the winsorization operator is defined as:

f(dn) =


dn if n ∈ [k + 1, N − k]
dk+1 if n ≤ k
dN−k if n > N − k

, (7)

so that exactly 2k values are replaced: the most extreme k values in both tails. If we abusively
write f(d) for the vector of f(dn) values, it holds that

‖f(d)− f(d)‖1 =
k∑

n=1
|dk+1 − dk+1|+

N−K∑
n=k+1

|dn − dn|+
N∑

n=N−K+1
|dN−k − dN−k|

= K(|dk+1 − dk+1|+ |dN−k − dN−k|) +
N−K∑
n=k+1

|dn − dn|

≤ (1 +K)‖d− d‖,

where the constant is clearly sub-optimal. It could be improved but would then rely on the
properties of the underlying vectors.

2.3.2 Variable engineering

Once the data has been cleaned, the researcher will often perform additional adjustments. We
list a few below.

Normalization is a common step in data preparation: it ensures that all variables have
roughly the same scales. This is convenient when one wants to compare effect sizes for example.
There are several ways to proceed, such as standardization, or min-max rescaling. Let us analyze
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the former:

‖f(d)− f(d)‖2 =
∥∥∥∥d−md

σd
− d−md

σd

∥∥∥∥
2

= σ−1
d σ−1

d ‖σd(d−md)− σx(d−md)‖2

= σ−1
d σ−1

d ‖(σd − σd + σd)(d−md)− σd(d− d + d−m)‖2
≤ σ−1

d σ−1
d |σd − σd| × ‖d−md‖2 + σ−1

d ‖d− d‖2 + σ−1
d ‖md −md‖2 (8)

≤ σ−1
d

√
N
|σ2
x − σ2

d|
σd + σd

+ σ−1
d ‖d− d‖2 + σ−1

d N−1/2‖d− d‖2 (9)

≤ c‖d− d‖2

where md is the constant mean vector of d, σd its standard deviation and

c = σ−1
d (1 +N−1/2 +

√
Nc1(σd + σd)−1),

the constant c1 being the one from Inequation (6) for p = 1. We have used that ‖d −md‖2 =√
Nσd and applied (21) and (6) in lines (8) and (9), respectively.

Sometimes, when working with time-series, the model requires stationary variables, but the
collected data is integrated and has unit roots. In other contexts, the level of the independent
variable may matter less than its variations from a predictive standpoints. Thus it is relevant to
consider variable differences in these settings too. In any case, the solution is differentiation:

f(dn) =
{

NA if n = 1
dn − dn−1 otherwise . (10)

In practice, the first missing point is often removed so that the resulting vector has length N−1.
For two numerical vectors with no missing points d and d,

‖f(d)− f(d)‖1 =
N∑
n=2
|dn − dn−1 − dn + dn−1|

≤
N∑
n=2
|dn − dn|+ |dn−1 − dn−1| ≤ 2‖d− d‖1

Sometimes, researchers seek to explain long term effects. For instance, in the predictability
literature, there is a debate between short-term and long-term predictability. At a first order
approximation, long term returns can be viewed as cumulative sums of shorter horizon returns,
which is why we briefly mention the topic below. For a given well-defined numerical vector, we
have in this case, for n > 0,

f(dn) =
n∑
k=1

dk,

and

‖f(d)− f(d)‖1 =
N∑
n=1

∣∣∣∣∣
n∑
k=1

dk −
n∑
k=1

dk

∣∣∣∣∣ ≤
N∑
n=1

n∑
k=1
|dk − dk| ≤ N‖d− d‖1,
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where the bound may seem loose, but can be sharp if dn = dn = 0 for n > 1 for instance.

To conclude this subsection, we acknowledge that many more operations exist in the data
preparation phase and some would require a lengthy treatment. For instance, joining procedures
that merge two tables according to a common key are a widespread practice. They are however
more complex to handle and we leave their analysis to future work.

2.3.3 Testing

An ubiquitous tool in the researcher’s arsenal is the linear regression. Given a matrix of
independent variables X and the vector of dependent variable y, the ordinary least square
(OLS) estimator b that minimizes the quadratic error

e2(X,y) = (y −Xb)′(y −Xb) (11)

is
b(X,y) = (X ′X)−1X ′y (12)

where v′ denotes the transpose of v (vector or matrix). In the sequel, we will always assume
that the inverse matrix is well-defined. The issue is then that there are two inputs. Given one
of them, it is possible to intuitively deduce data-specific Lipschitz constants. For instance, if X
is fixed, then factorizing the X-dependent matrices yields

‖b(X,y)− b(X, z)‖ ≤ cX‖y − z‖. (13)

The case when y is fixed is less straightforward but can be handled with suitable norms. The
general case when both X and y are subject to perturbation is more intricate. It is reviewed
in Section 5 of Grcar (2003). One foundational result (Golub and Wilkinson (1966)) is that if
‖X‖2 = ‖y‖2 = 1, then

‖b(X,y)− b(Z,v)‖2 ≤ c(‖X −Z‖2 + ‖y − v‖2) +R, (14)

where c depends on the smallest singular value of X, on ‖b‖2, and on the quadratic error e2

defined in Equation (12). The matrix norms are of Frobenius type: ‖X‖22 = tr(XX ′), where
tr(·) is the trace operator. The above result holds in the case when the norms are arbitrarily
small and the residual term R is a second order term which is quadratic in the maximum of the
two norms.

While the coefficients in linear regressions (or more general models) are undoubtedly analyzed
by researchers, it is their statistical significance which often matters more because it will
determine if the effect revealed by the study is strong enough.

In the case of a linear model, the expressions for the t-statistics are tk = bk/
√
s2Sk, where

Sk is the kth diagonal element of (X ′X)−1 and s2 = e2/(N −K), with K being the number of
columns of X (Equation 4-47 in Greene (2018)). Lipschitz numbers can be obtained for Sk (see
e.g., Demmel (1992)) and for s2 = (N − K)−1(y′y − y′X(X ′X)−1X ′y) as well. From these
numbers, it is possible to derive a Lipschitz constant similar to (14) for the statistic, based on
norms that depend on the inputs.
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Often, models are tested with several control variables and model permutations, in order
to check the robustness of the initial specification. It is even possible to aggregate coefficients
of multiple specifications via weighting, as in Hansen (2007) and Zhang and Liu (2019). In
linear models, adding columns to the matrix X is often handled via the Frish-Waugh-Lovell
theorem. The Lipschitz continuity of this operation with respect to estimates and t-statistics is
currently out of the scope of the paper (it requires to replace the concatenation [X1 V1] with
[X2 V2] as the independent matrix in Equation (12)). In the field of randomized experiments,
Muralidharan et al. (2022) analyze the change in significance for coefficients of short versus long
models.

Naturally, modern studies rely on much more complex apparatus, including structural equa-
tions, difference-in-differences, dynamic panels, improved estimators (White (1980), Newey and
West (1987) to cite the most commonly used), etc. Given the exhaustiveness and complexity of
the related methods, we cannot treat them exhaustively, but it is possible that many of them
can be described as Lipschitz operators.

2.4 Model design vs. protocol shifts

Not all mappings are equal. For instance, the choice of independent variable may very well be
a strong modelling assumption. Consider the two alternative questions:

• Does variable X predict variable Y ?
• Can variable Y be predicted?

In the first case, it the focus is clearly on the predictive ability of variable X, hence picking it
as independent variable is not a design choice, it is an obligation. In the second option, choosing
variable X or Z, or W is left to the appreciation of the researcher, and, in fact, it is conceivable
to mine as much data as possible to find the few predictors that may indeed predict Y . Typically,
in the debate on the predictability of the equity premium, many variables have been proposed.
If many are studied, statistical significance must be corrected for multiple testing. Because we
propose to generate series of outcomes, the ideas presented in the present paper are undoubtedly
linked to this notion, a theme that goes back at least to Bonferroni (1936), and which is useful in
many settings, including medicine (Farcomeni (2008)), economics (Viviano et al. (2021)), finance
(Harvey and Liu (2020), Harvey et al. (2020), Giglio et al. (2021)), generic model discrimination
(Hansen et al. (2011)) and statistics more generally (Fan and Han (2017), Wang et al. (2017)
to cite but a few). In many cases, as in Romano and Wolf (2005, 2010) or Wilson (2019), the
methods take as input series of test statistics (or p-values). Recently, several studies in finance
have approached research questions by resorting to large scale tests in which many predictors
are considered (Yan and Zheng (2017), Chordia et al. (2020), Giglio et al. (2021) and Jensen
et al. (2021)).

The approach we advocate here is slightly different. We assume that the researcher has
a precise research question in mind, but that there are many different ways to approach and
answer it, thanks to small shifts, or tweaks, in the empirical protocol, exactly as in Huntington-
Klein et al. (2021) and Menkveld et al. (2021). This is also the spirit of model averaging, or
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multi-model inference (Burnham and Anderson (2004)). One common way of extracting
multiple coefficients is to consider several combinations of control variables in regressions, as in
Zhang and Liu (2019) and many references therein.

One way to put it is to consider that exhaustive robustness checks must become the baseline
result. The difference with multiple testing is illustrated in Figure 1. In the left graph, the
space of models is wide, and all hypotheses are tested with the same unique protocol (e.g.,
simple portfolio sorts, or linear models). In the right plot, the scope is narrower, but the
methods used to reach conclusions are heterogeneous. In financial economics, the first type
can be found in Jensen et al. (2021), in which the authors approach the topic of asset pricing
anomalies via a large-scale study encompassing thousands of firms worldwide. The portfolios
are all constructed using the same methodology. Two examples of the second type of studies
are Asness and Frazzini (2013) and Amenc et al. (2020), wherein the authors focus solely on the
value anomaly, but propose alternative ways to construct value factors. Similar analyses have
been carried out for the momentum anomaly (see Novy-Marx (2012) and Gong et al. (2015)).

Large scope, unique design (protocol)

Multiple testing

Design
choice n°2

1

2

3

4

5

Design
choice n°1

1

2

3

4

Narrow scope (focused research question),
multiple design choices

Exhaustive testing

Figure 1: Illustration of model rich and protocol poor versus model poor and protocol
rich studies.

The variety of strata in the design of empirical studies is such that most intermediate steps
cannot be listed in the present paper - one reason being that many of them can be discipline-
specific.
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3 Parametric random operators

3.1 Presentation

The deterministic framework presented in Section 2 suggests, via Lemma 1, that many changes
in the empirical protocol can be compounded and lead to very different outcomes.7 This comes
from the upper bound in the lemma, which depends on products of constants that can often
be larger than one. In practice however, two choices at different stages of the study may have
opposite effects, thereby cancelling each other.

In this section, we propose another, somewhat similar, approach, designed for operational-
ization. First, as we do not model the data extraction phase, we can consider the initial object D
to be random or deterministic. Second, we impose that each step of the research process which
we model as fj is random, and can be parametrized by a vector pj . The rationale is that, for
any stage of the process, the researcher faces options and instead of setting choices in stone, we
allow for each option to have a probability of materialization. The vector pj is used to code
these probabilities. We illustrate this idea in Figure 2 below.

D

data
cleaning
phase 1

data
cleaning
phase 2

p
1=

f1 f2

likelihood
of imputation
vs. deletion
of missing

data

p
2=

distribution
of the

winsorizing
threshold

modelling
assumption

f3

p
3=

probability
of using
levels or

differences

predictor
variable

f4

p
4=

probability
of choosing
particular

independent
variables

estimator
type

f5

p
5=

probability
of simple
OLS versus

HAC
estimator

o
=
t-stat

Figure 2: Illustrative diagram. We provide a schematic view of a simple five-step empirical protocol
with associated parameters pj .

Given an original dataset D (which could also be random), the researcher:

1. first decides on how to deal with missing data. For simplicity, we consider two options:
imputation (say from previous non-missing value) and deletion;

2. then removes outliers via winsorization. The thresholds can be drawn from uniform dis-
tributions in the intervals [0,0.02] and [0.98,1];

3. chooses whether to use original series as independent variables, or differences (this may
depend on the econometric properties of the variables);

4. picks the dependent variables (e.g., short-term versus long-term);
5. selects an estimator for coefficients and variances (simple OLS (iid) versus HAC).
7The dispersion of outcomes can be measured as the standard variation of these outputs. This is what Menkveld

et al. (2021) refer to as non standard errors.
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We thus update the core sequence of the paper to:

oJ(D,P ) =
[
©1
j=Jfj,pj

]
(D) = fJ,pJ

◦ · · · ◦ f1,p1(D), (15)

where P encompasses all parameter sets pj . The output oJ is a random variable that depends
on the realizations of the operators fj - and possibly on that of D if stochastic initial samples are
allowed. In many studies, only one realization is reported, and robustness checks correspond to
other realizations. In all generality, the realization of fj may depend on those of prior operators.
For example, some predictors may or may not be relevant if they are differentiated.

The formulation (15), because it relies on parameters at each layer, resembles feed-forward
neural networks (NNs), though there are several notable differences between the two concepts.
First, NNs are not traditionally viewed as random objects. In stochastic gradient descent, the
randomness comes from the samples that are drawn, akin to D, in our framework. Second, there
is no supervision in Equation (15). The output is not known in advance (labelled), and we do
not seek to optimize on the set P to obtain a desired value (or distribution) for oJ .8 Lastly, in all
generality, the operators are not differentiable, meaning that back-propagation is not possible.

3.2 Are mappings drivers of outcomes?

In traditional inferential statistics, the randomness of metrics (e.g., t-statistics) comes from the
data generating process (DGP) ex-ante, and from estimation errors ex-post. In the equation
y = g(X) + ε, the stochastic term is often the error ε, and assumptions are made on its
distribution (notably with respect to X) in order to derive properties of potential estimators of
g. Thus, the theoretical law of a t-statistic (e.g., Student) stems from the hypothesized behaviour
of the terms on the right-hand side of the modelling equation.

In Equation (15), the randomness comes from the original sample X (which is linked to the
DGP), but also, and more importantly, from all modelling steps fj . One interesting extension
pertains to the random variables oJ |fj , which are the output values, conditional on the knowledge
of one operator, say, fj . This is notably useful to determine if the operator fj has an important
impact on the distribution of the outcome.

A priori, we cannot make any distributional assumption on the oJ . Thus, in order to test
if one operator has an impact on the outcome, it is feasible to devise a test à la Kolmogorov-
Smirnov on o

{f}
J and o

{f}
J , which we define as the random variables oJ |fj = f and oJ |fj = f ,

respectively - for two different mappings f 6= f .
This approach is somewhat cumbersome, so we take a simpler route and test for average

outcome values only. This is particularly relevant when the parameter pj is the probability be-
tween choosing two alternatives (e.g., imputation versus deletion), but can be defined whenever
the mapping fj has any finite number of possible realizations. In order to evaluate the impact
of one particular mapping, we will resort to a paired test operator, which we define below.

Definition 2. Given two vectors v and w of equal size, we call p(v,w) the p-value of the paired
Wilcoxon signed-rank test comparing the averages of v and w.

8Going forth with this analogy, data snooping could be viewed as some form of supervised selection: each
new forward pass in the network would only be retained if the outcome produces statistically significant results.
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Now, we assume that the mapping fj has rj possible realizations fj,r for r = 1, . . . rj . For
example, this can be alternative ways of handling missing data (deletion versus imputation),
or the set of possible combinations of independent variables, in which case rj is the cardinal
of this set (all permutations that are relevant for the study). We write vj,m for the vector of
all realizations of o{fj,m}

J . It corresponds to all observed outcomes (e.g., t-statistics) over all
permutations of all mappings fi for i 6= j when the mapping fj is fixed to its alternative fj,m.

Heuristically, we posit that a mapping fj is a driver of the outcome oJ if variations in fj
yield significant changes in the average values observed for oJ . We formalize this notion below.

Definition 3. The mapping fj is a driver of the scalar outcome oJ at the level α ∈ (0, 1) if

min
m6=n

p(vj,m,vj,n) < α (strong driver, case rj > 2) (16)

max
m6=n

p(vj,m,vj,n) < α (weak driver, case rj > 2) (17)

p(vj,1,vj,2) < α (driver, case rj = 2) (18)

This notion of DOSO (driver of scalar outcome) can be further refined, conditionally on
some other mapping being fixed, so as to focus on sub-parts of the empirical study. We leave
this refinement aside for the time being to avoid unnecessary heaviness in the notations.

3.3 What about statistical significance?

Many scientists argue in favor of redefining the notion of statistical significance (Harvey (2017),
Benjamin et al. (2018)), or even propose abandoning it purely and simply (Carver (1978),
Amrhein et al. (2019), McShane et al. (2019)) - mainly for two reasons. First, because people
sometimes confuse p-values it with the probability of the null being true, given the data. And
second, because p-values become the objective of the research project so that researchers can be,
consciously or not, incentivized to tilt their empirical protocols in order to produce the sought
output (i.e., p-values below some chosen threshold, usually 1% or 5%). Without p-values, no
more p-hacking.

However, the framing of the problem here is different: we are not interested in multiple
hypothesis testing, but rather in testing the same hypothesis multiple times, via many variations
on the protocol. Simply put, in traditional inference, the randomness of the t-statistic comes
from the estimated errors - and we observe only one value. In a garden of forking paths, we
observe many, and their randomness comes from the multitude of choice made by the modeller.
In a simple linear model, y = Xb+e, inference usually comes from e. Subject to random paths,
the premise is the opposite because the starting point is the generation random inputs (y and
X) which are all particular realizations of the world.

Under precise modelling assumptions (see the discussion in Subsection 2.4), forking paths
can be viewed as robustness checks that provide information about the distribution of the metric
or the effect under consideration. Similarly to the improvement brought by random forest to
decision trees, gardens of forking paths enhance the inferential power of single paths when
determining the significance of a given effect.
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Unfortunately, the true distribution of the effect is usually unknown and there are at least
two non-exclusive routes the researcher can take to try to characterize it. The first route is to be
transparent about the protocol (all paths) and the generated outcomes, and to disclose their full
distribution, via a histogram, an empirical cdf, a boxplot, or simply via descriptive statistics.

The second route involves additional hypotheses. Below, we list two possible approaches.
1. If it is critical to determine the significance of a true effect b, the most natural option is to

compute a weighted average of estimators. For instance, ifM paths have generated a series
of outputs (effects) bm such that E[bm] = b, two families of techniques are the Bayesian
model averages (BMA, see Chapter 3 of Steel (2020) and Section 2 of Moral-Benito (2015))
and the frequentist model averages (FMA, see Chapter 4 of Steel (2020) and Section 3 of
Moral-Benito (2015)) - though some models combine both (Magnus and De Luca (2016)).
One crucial issue is that given the proximity of some paths, the assumption of non-
correlation between the random variables bm may be unrealistic. This problem is discussed
in Buckland et al. (1997), wherein the authors acknowledge that the most conservative
stance is to assume perfect correlation. Benjamini and Yekutieli (2001) discuss the eval-
uation of the false discovery rate (FDR) in a multiple testing framework with correlated
test statistics. Another route is to invoke ergodic results, such as Theorem 5.16 in White
(2001). In our framework, connecting the dots would require to model the sequences bm−b
as adapted mixingales.
One alternative approach would rely on the results of Chen and Doerge (2020). The main
theorem therein proves a strong law of large numbers for the average number of rejections
(from the p-values) and average number of false discoveries. The results hold under fairly
general dependence structure, as long the L1 norm of the correlation matrix does not
increase too rapidly with the number of outcomes. This assumption is hard to verify in
practice, but assuming it holds, the proportion of rejections at the α level is approximated
by M−1∑M

m=1 1{pm<α}, where the pm are the p-values associated with the bm coefficients.

2. If the model under consideration can be formulated in a simple uni-dimensional fashion
(observations have only one index, i), a panel approach can be considered in order to build
a meta-model. In this case, the two dimensions are defined as follows: yn,i are xn,i are
the ith observations of path number n. The model becomes longitudinal along the paths.
Again, correlation issues arise, and the literature provides some solutions to handle them.
The most direct technique is to assume a factor structure in the errors, as in Pesaran
(2006). Extensions to non-linear models can be found in Su and Jin (2012) and Cai et al.
(2020).

3.4 Exhaustiveness and selectivity

One major challenge with forking paths is computation times. If, at step j, there are ηj options
which take τj time to compute (assuming homogeneity across options), then the total time to run
all paths is ∏J

j=1 ηjτj . Here we consider that all paths have the same probability for simplicity.
Let us lay out a simple example. We assume J = 10 and half of the steps have two options,
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while the other half have three. This makes 25 × 35 = 7, 776 paths in total, an amount which is
rather exhaustive. If each stage takes 10 seconds, it will take 21.6 hours to generate all paths.

This implies that the forking paths must be chosen carefully if some steps require long
treatments: some robustness checks (mappings) are more impactful than others. In addition,
the reporting of outcomes of forking paths forces to focus on a limited number of metrics to
disclose. In some fields, it is customary to gather dozens, if not hundreds, of values inside tables.
Showing distributional properties of outcomes requires more space than one estimate and one
p-value, which forces the researcher to be more selective with the information that is shown in
academic articles.

4 Application: equity premium prediction

4.1 Data

For the sake of reproducibility, the illustration of the concepts of the paper rely on a public
dataset as well as on a problem which is widely documented in the literature.9 In financial
economics, an old, still unresolved, question pertains to whether aggregate stock returns can be
predicted by macro-economics indicators. The debate is impossible to settle, but recent results
suggest a contingency on return horizon (Bandi et al. (2019)), even if long-term predictability
is biased by construction (Boudoukh et al. (2008), Boudoukh et al. (2021)).

A critical view on the matter is the seminal article by Welch and Goyal (2008), in which the
authors document the poor forecasting ability of traditional predictors. A favorable feature of
the study is that the data is public, and has even been updated in the follow-up paper Goyal
et al. (2021). It is this material that we use for our application.

4.2 Forking paths

In order to generate enough metrics, we work with nine stages which are depicted in Figure 3
below. We briefly comment on each.

1. data frequency determines the horizon of returns, hence the left-hand side of the equa-
tion. In addition, this has a major effect on sample sizes, as annual samples are 12 times
smaller, compared to monthly ones.

2. handling missing points boils to two options. The first is to remove rows of missing
points, which means all regressors will start at the same point in time (1937). The sec-
ond option (imputation) allows predictor-dependent sample sizes and some of them are
available in 1871. Thus, this stage impacts sample depth and samples with fewer than 30
observations are discarded from the analysis.

3. winsorization defines the cutoff threshold for the taming of outliers, from none (0%) to
3%. The data is standard, thus all values are trustworthy, so this step could theoretically
be omitted. But it participates to increase the number of outputs, hence we keep it for
the sake of exhaustiveness.

9The code used to generate all results is available at https://www.gcoqueret.com/files/misc/forking_paths.html

17

Electronic copy available at: https://ssrn.com/abstract=3999379

https://www.gcoqueret.com/files/misc/forking_paths.html


4. variable engineering decides whether or not to use levels or differences in the regressions.
5. independent variable sets the predictor. Six options are possible and all are available

across the three frequencies (monthly to annually).10

6. horizon fixes the number of periods that are used to compute the future return (dependent
variable). We underline that three periods have different meanings depending on the
original data frequency (chosen in step 1).

7. starting point determines if the sample commences at its first point, or at its middle
point. This option leaves room for sub-sampling (on the two halves of each original sample).

8. end point is either the end of the sample, or its middle point. The latter option is not
possible if it also corresponds to the starting point.

9. estimator type chooses between iid errors, or the improved HAC variance estimator of
Newey and West (1987). The regression model is simply

yt+1 = a+ bxt + et+1, (19)

where yt+1 is the equity premium, xt the lagged predictor and et+1 the residual.

Code-wise, each path is generated by a call to chained modules, akin to the first version of
Keras API (keras.io), as shown in Table 1. The paths are determined by the combination of
parameters which are the arguments of the modules. Resorting to functional programming and
parallelization eases the syntax and accelerates the production of outputs.

module_sheet(prob_sheet = prob_sheet) %>% # Step 1: select data frequency
module_cleaning(prob_remove = prob_remove) %>% # Step 2: clean the data
module_winsorization(threshold = threshold) %>% # Step 3: manage outliers
module_levels(prob_levels = prob_levels) %>% # Step 4: decide between levels versus differences
module_independent(variable = variable) %>% # Step 5: choose predictor
module_horizon(horizon = horizon) %>% # Step 6: pick return horizon (dependent variable)
module_start(start_quantile = start_quantile) %>% # Step 7: starting point (for subsampling)
module_stop(stop_quantile = stop_quantile) %>% # Step 8: ending point (for subsampling)
module_estimator(prob_HAC = prob_HAC) # Step 9: select estimator type

Table 1: Illustration via R code

There are ∏9
j=1 rj = 6, 912 possible paths from the data to the output. For simplicity, each

is equi-probable so that we only need to consider each combination once.

10payout is the difference between the log of dividends and the log of earnings, b/m is the the ratio of book
value to market value for the Dow Jones Industrial Average, svar is the sum of squared daily returns on S&P 500,
dfr is the difference between the return on long-term corporate bonds and returns on the long-term government
bonds, dfy is is the difference between BAA- and AAA- rated corporate bond yields, and ntis is the ratio of
twelve-month moving sums of net issues by NYSE listed stocks divided by the total market capitalization of
NYSE stocks.
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Figure 3: Diagram of empirical protocol (forking paths). The graph, akin to a neural network
structure, depicts the nine-step algorithm used to produce the t-statistic in the study. Each path has the
same probability of realization (uniform distribution). The number of mapping options, rj is reported
between brackets below the stage number.

4.3 Baseline results

In Figure 4, we plot the distribution of the p-values obtained across all paths. The restriction
of the distribution, to the extreme left of its support, known as the p-curve, (Simonsohn et al.
(2014a)) is downward sloping (or right skewed). The opposite shape (left-skewed) is usually
associated with attempts of p-hacking. In addition, we show the cumulative distribution function
(cdf) of p-values associated to each independent variable. The latter choice is an important
modelling decision which is why we consider predictors separately. The cdf can be a tool for
p-hacking detection, especially if it is not concave (Elliott et al. (2021)). The corresponding
curve for the ntis predictor seems to be concave, which signals a potentially strong effect of this
variable over the equity premium.

The impact of mappings is displayed in Figures 5 (histograms for dual choices) and 6 (box-
plots for mappings with more options). In the first case, while distributions are not necessarily
very close, it is hard to argue that the mappings profoundly alter the average of the result.

In Figure 6 however, two phenomena are at work. In the right panel, the horizon of the
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Figure 4: Distribution of p-values. In the left panel, we plot the histogram of all p-values, as well
as the p-curve (Simonsohn et al. (2014a)), which is the restriction of the distribution to the interval of
significant values (which we take to be [0,0.1]). In the right panel, we show the cdf of the p-values, sorted
by independent variable. Results for regressions with fewer than 30 observations are discarded.
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Figure 5: Impact of mappings: robustness checks. We report the distribution of t-statistics for
three binary choices in mappings. Results for regressions with fewer than 30 observations are discarded.

dependent variable generates heterogeneity in the dispersion of t-statistics. The latter have
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Figure 6: Drivers of scalar output: modelling assumptions. We report the distribution of
t-statistics for two important modelling choices: the independent variable (left panel), and the return
horizon of the dependent variable. Results for regressions with fewer than 30 observations are discarded.

more outliers beyond the 5% threshold for the long-term returns. This is somewhat in line with
the findings of Bandi et al. (2019), if we only focus on the magnitude of the statistics (and not
their sign). We note, however, that the inter-quartile ranges remain inside the insignificance
band between the dotted lines.

The left panel of Figure 6 clearly illustrates the contingency of results on the choice of the
predictor. This is true both for the signs of t-statistics (rather positive for b/m, rather negative
for ntis), but also for their dispersion (dfy seems to have few outliers).

4.4 Drivers of outcomes

To illustrate the concept of drivers of outcomes proposed in Definition 3, we run batches of
paired Wilcoxon tests between two types of scalars obtained in the predictive regressions: the
t-statistics and the corresponding p-values. The main difference between the two comes from the
importance from the sign. Two series with t-statistics of -4 and +4 will have similar (negligible)
p-values, but the test will reject equality between the statistics.

In Table 2, we provide the p-values of the Wilcoxon tests for both outcome types (t-statistics
in the upper triangle and p-values in the lower triangle). The 0.281 value in the middle of the
first row means that the t-statistics pertaining to the payout and dfr variable have means that
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are not significantly different. Thus, switching from one variable to the other is not impactful
for the conclusion of the study. This is confirmed in the left panel of Figure 6, from which we
infer that both means are slightly negative (-0.21 and -0.37), and indeed not very far apart.

pair-wise tests simple test
payout b/m svar dfr dfy ntis

pa
ir-

w
ise

te
st
s payout 0.000 0.000 0.335 0.000 0.000 0.000

b/m 0.000 0.000 0.000 0.000 0.000 0.000
svar 0.003 0.000 0.000 0.281 0.000 0.000
dfr 0.000 0.000 0.057 0.000 0.000 0.000
dfy 0.008 0.054 0.000 0.000 0.000 0.000
ntis 0.000 0.000 0.000 0.000 0.000 0.000

simple test 0.011 0.000 0.000 0.000 0.043 0.000

Table 2: Test for the variable choice. We evaluate if the choice of independent variable is a
mapping that is a driver of scalar output, in the sense of Definition 3. The reported numbers in the bulk
of the table are the p-values of the Wilcoxon test for all pairs of variables. The upper triangle of the
matrix pertains to the values obtains when comparing the series of t-statistics, while the lower triangle
relates to comparisons of p-values (both t-statistics and p-values are scalar outcomes). In the last column
and row, we report the p-values of the simple mean tests of each predictor outcome versus all other
predictor values (performed on t-statistics and p-values, respectively). Results for regressions with fewer
than 30 observations were beforehand discarded.

In both triangles of the inner matrix of Table 2, two p-values lie above the 5% threshold
(though marginally above in the lower triangle). According to Definition 3, the choice of the
variable is therefore a weak driver of both outcomes at the 5% level. At the 6% level however,
the mapping that chooses the variable becomes a strong driver of p-values: the series of p-values
have significantly different means (across variables).

The last row and column of Table 2 include the p-values of the mean tests when comparing
p-values (row) or t-statistics (column) of each predictor versus all others. The tests forcefully
reject the null for the t-statistics. For the p-values, some predictors (payout and dfy) have results
above 1% , implying that their average p-values are not exceedingly far from the average of all
other predictors.

4.5 A closer look at b/m and ntis
The evaluation of the impact of one mapping at the over-arching level, as shown in Figure 5
can hide important local differences. For instance, the choice of levels versus differences in the
central panel seems to have little impact on the full distribution of t-statistics. In Figure 7,
we use a jitter plot to locate the t-statistics of the seemingly two best predictors of the equity
premium. They are shown in panels of data frequency (x-axis inside plots) and of forecasting
horizon (from left to right).

For the b/m variable, the differentiation mapping has undoubtedly a strong impact. The
two colors are hardly intertwined in many panels, meaning that the average t-statistic for levels
and that for differences are significantly different, on average. The associated p-values are zero,
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Figure 7: Focus on b/m and ntis. We plot the values of t-statistics for two predictors: b/m (upper
panel) and ntis (lower panel). These values are shown as functions of data frequency (x-axis inside plots)
and of forecasting horizon (from left to right). Colors mark the difference between levels and differences
for predictors and the numbers in the rounded rectangles are the p-values of the t-test between the two
series (levels versus differences). Results for regressions with fewer than 30 observations are discarded.

except for two clusters (1 and 3 periods for annual data). For ntis, the discrepancy between the
two subsets is more ambiguous, though it is clearer for long forecasting horizons (all p-values
are below 1%).

4.6 Model averaging

After the generation of multiple estimated effects, the natural next step is to aggregate them
into a meta-estimator and the most straightforward option is a linear combination:

b̂∗ =
J∑
j=1

wj b̂j , (20)

where the main issue is the determination of the weights wj . There are several ways to proceed
in a frequentist fashion (see Moral-Benito (2015), Zhang and Liu (2019) and Steel (2020)),
and for simplicity, we will stick with the with the definition that relies on likelihood through
information criteria:

wj = e−∆j/2∑J
k=1 e

−∆k/2
, ∆j = AICj −min

j
AICj ,
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where AICj is the Akaike Information Criterion of model j. For the estimation of the variance
of the aggregate estimator, we follow Equation (1) in Burnham and Anderson (2004):

σ̂2
∗ =

 J∑
j=1

wj

√
σ̂j + (b̂∗ − b̂j)2

2

.

In Figure 8, we show the averaged coefficients within their 95% confidence interval. We split
the analysis along three axes: variable, level versus difference, and sampling frequency. The
latter is important because it is determinant in the sample sizes which are used to compute
the width of the intervals. For a given frequency and variable, they are homogeneous, though
not exactly equal, and we use their weighted average T∗ = ∑J

j=1wjTj . The impact of sampling
frequency on the width of intervals is obvious. Intervals pertaining to monthly data coincide
with the average estimators, whereas intervals linked to annual samples are fairly large.
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Figure 8: Frequentist model averaging. We display average coefficients within their 95%
confidence interval. Coefficients stem from Equation (20). Confidence intervals are defined by
[b̂∗ − 1.96σ2

∗/
√
T∗, b̂∗ + 1.96σ2

∗/
√
T∗], where T∗ =

∑J
j=1 wjTj , with Tj being the sample size of model

j. The left panel displays results when predictors are levels, while the right one focuses on differences of
variables. To allow comparisons, all predictors are scaled to have unit variance before estimation.

As a confirmation of our previous results, we obtain that ntis yields only negative coefficients,
and the intervals do not overlap with zero. The b/m variable has mostly positive estimates,
with one exception of the quarterly data in the right panel. Surprisingly, the dfy variable also
stands out with coefficients which are large in magnitude for quarterly and annual samples. For
quarterly variables, the effect cancels out between levels (positive coefficients) and differences
(negative ones). This partly explains why the variable was not previously identified as a potent
driver of the equity premium.
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For the sake of completeness, we also propose an analysis from the perspective of Bayesian
model averaging. We follow the standard nomenclature, as is for instance laid out in Hoeting
et al. (1999). The quantity of interest is b, with posterior probability given the data D equal to

P[b|D] =
M∑
m=1

P[b|Mm, D]P[Mm|D],

where M = {Mm,m = 1, . . . ,M} is the set of models under consideration. In this paper, one
model corresponds to one complete path. Notably, the above equation translates to the following
conditional average and variance:

E[b|D] =
M∑
m=1

b̂mP[Mm|D] (21)

V[b|D] =
M∑
m=1

(
V(b|Mm, D) + b̂2m

)
P[Mm|D]− (E[b|D])2 (22)

where b̂m is the estimated effect in model m. The posterior model probabilities are given by

P[Mm|D] =

 M∑
j=1

P[Mj ]
P[Mm]

lD(Mj)
lD(Mm)

−1

, (23)

with lD(Mj) being the marginal likelihood of model j. Because we are agnostic with respect to
which model is more realistic, we will set the prior odds P[Mj ]

P[Mm] equal to one. Note that in this
case, the posterior probabilities are then simply proportional to the likelihoods. The remaining
Bayes factor is by far the most complex and we follow the recommendations of Fernandez et al.
(2001) (Equation (2.16), adapted for inhomogeneous sample sizes):

lD(Mj)
lD(Mm) =

(
nj

nj + 1

) kj
2 (nm + 1

nm

) km
2

(
sm+nmvm
nm+1

)(nm−1)/2

(
sj+njvj

nj+1

)(nj−1)/2 , (24)

where nj is the inverse of the number of observations used in model j and kj is the number
of predictors in this model, omitting the constant (kj = 1 in our case). Moreover, njvj is the
sample variance of the dependent variable in model j. Finally, sj is the sum of squared residuals
under model j.

In Figure 9, we plot the average coefficients computed according to Equation (21), along with
ad-hoc confidence intervals. We only report results for annually sampled variables in order to
reduce sample sizes. Indeed, their exponentiation in some term of Equation (24) are problematic
when two models have significantly contrasting sample sizes. This issue is circumvented with
annual samples.

The intervals in Figure 9 tend to confirm those obtained for the frequentist averages. Both
ntis and b/m are associated with intervals that do not overlap over zero. In fact, for difference
predictors, the Bayesian averages are indistinguishable from their frequentist counterparts.
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Figure 9: Bayesian model averaging (annual data). We display average coefficients within their
95% and 99.5% confidence intervals. Averages stem from Equation (21). The bounds of the confidence
intervals are defined by E[b|D]± α

√
V[b|D]/T∗, where T∗ =

∑J
j=1 wjTj , with Tj being the sample size of

model j and wj the posterior model probabilities. α relates to the confidence level. The left panel displays
results when predictors are differences, while the right one focuses on levels. To allow comparisons, all
predictors are scaled to have unit variance before estimation.

4.7 Rejection rates

Our final analysis pertains to the average rejection rate proposed in Chen and Doerge (2020).
In the left panel of Figure 10, we plot these rates for each individual predictor, as well as for all
variables taken together (ALL, in black). For some variables (ntis and b/m notably), it is plain
that the rejection rate is well above the theoretical decision threshold (under the null), which
seems to suggest some kind of predictability. In the right panel, we consider the subcases when
the predictors are only taken as levels, and not differences. The rejection rates at the 1% level
then surpass 20% for these two variables.
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Figure 10: Rejection rates. Following Chen and Doerge (2020), we compute the average rejection
rate across all forking paths (left), and all forking paths with level predictors (right). We report the
numbers for 4 significance levels (x-axis), and split the analysis on a variable-by-variable basis. The
theoretical rate under the null is shown in light blue.

5 Conclusion
Amid debates in some scientific communities about the validity of empirical results, we make
the case for an exhaustive approach. Namely, we suggest to report results for a large number of
design choices, as if extensive robustness checks were in fact constituent of the baseline research
protocol. Small variations in designs allow the generation of many estimates and test statistics.
The distribution of these statistics can help figure out if one configuration yielded a favorable
outlier, or if the sought effect is indeed statistically strong. Moreover, having many coefficient
or statistics at one’s disposal allows to resort to aggregation so as to obtain more robust values
and confidence intervals.

The application of these ideas to equity premium prediction shows that two variables, net
equity expansion and aggregate book-to-market ratio, have strong explanatory power over future
excess returns.

There are of course several limitations to our suggestion. First, it is possible to push the
limits of data-snooping to the extreme by reporting only the combinations of design choices that
fit a particular narrative. Second, given the amount of time required to generate comprehensive
results, the research question must be inherently simple. Each path should not take more than
a handful of minutes, so that hundreds, or thousands, of them can be generated in less than one
day. The aim of the paper is clearly not to increase the carbon footprint of researchers. Long
computation times may contribute to this footprint and we refer to Mariette et al. (2021) for a
discussion on this matter. This is why a precise framing of the research question, as well as its
relevant ramifications, is imperative to avoid superfluous digressions.
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