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Abstract5

Popular bid-ask spread estimators are downward biased when trading is infrequent.6

Moreover, they consider only a subset of open, high, low, and close prices and ne-7

glect potentially useful information to improve the spread estimate. By accounting8

for discretely observed prices, this paper derives asymptotically unbiased estimators9

of the effective bid-ask spread. Moreover, we combine them optimally to minimize10

the estimation variance and obtain an efficient estimator. Through theoretical anal-11

yses, numerical simulations, and empirical evaluations, we show that our efficient12

estimator dominates other estimators from transaction prices, yields novel insights13

for measuring bid-ask spreads, and has broad applicability in empirical finance.14
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The effective bid-ask spread measures the distance of observed transaction prices22

from the unobserved fundamental price, and it is a predominant measure of transaction23

costs in financial markets. The literature on measuring bid-ask spreads has proceeded24

along two complementary paths that focus on either high-frequency or low-frequency data.25

The high-frequency literature relies on trade and quote data to obtain an explicit proxy26

of the fundamental price and calculate the distance of transaction prices from it (Holden27

and Jacobsen, 2014; Stoikov, 2018; Hagströmer, 2021). The low-frequency literature28

introduces assumptions about the fundamental price to derive estimators from transaction29

prices only, without requiring any information about quotes (Roll, 1984; Hasbrouck, 2009;30

Corwin and Schultz, 2012; Abdi and Ranaldo, 2017).31

While measures from trades and quotes are typically more accurate, low-frequency32

estimates are more readily available and are becoming increasingly popular due to the33

difficulties and costs of obtaining quote data for international markets, historical data34

samples, and asset classes other than stocks.1 However, the estimators developed thus35

far rely on the assumption that prices are observed continuously. In contrast, the number36

of trades within any time interval is finite in real markets, and prices unfold in discrete37

time. We show that this assumption causes a downward bias when the number of trades38

per observation period is small. Moreover, these estimators consider only a subset of open,39

high, low, and close prices and thus neglect potentially useful information to improve the40

spread estimate and reduce the estimation variance. Jahan-Parvar and Zikes (2023) show41

1For instance, recent use cases of low-frequency estimators include: stock return predictability and
asset pricing anomalies (McLean and Pontiff, 2016; Hou, Xue, and Zhang, 2018; Chen, Eaton, and Paye,
2018; Birru, 2018; Hua et al., 2019; Jacobs and Müller, 2020; Patton and Weller, 2020; Amihud and Noh,
2020; Chaieb, Errunza, and Langlois, 2020); municipal and corporate bonds (Schwert, 2017; Bongaerts,
de Jong, and Driessen, 2017; Cai et al., 2019; Kaviani et al., 2020; Bali, Subrahmanyam, and Wen, 2021;
Ding, Xiong, and Zhang, 2022); bond funds (Goldstein, Jiang, and Ng, 2017; Choi et al., 2020); currency
markets (Michaelides, Milidonis, and Nishiotis, 2019; Ranaldo and de Magistris, 2022); OTC derivatives
(Loon and Zhong, 2016); interest rates (Ranaldo, Schaffner, and Vasios, 2021); monetary policy (Grosse-
Rueschkamp, Steffen, and Streitz, 2019); institutional trading costs (Eaton, Irvine, and Liu, 2021);
investor behavior (Li, Subrahmanyam, and Yang, 2018); information and dark pools (Brogaard and Pan,
2021); and machine learning (Easley et al., 2020). See Table I.1 in the Internet Appendix for a survey.

3



that a larger estimation variance causes a larger upward bias when the spread is small42

compared to volatility due to the methods employed to guarantee non-negativity of the43

spread estimates in small samples. In summary, current estimators understate bid-ask44

spreads when expected to be the largest and overstate bid-ask spreads when expected to45

be the smallest.46

In this paper, we develop an asymptotically unbiased estimator with minimum vari-47

ance by accounting for discretely observed prices and optimally considering the complete48

information set of open, high, low, and close prices. First, we derive multiple bid-ask49

spread estimators from several combinations of prices. Our methodology yields estima-50

tors with an analytical term that depends on the probability that opening or closing prices51

coincide with the highest or lowest prices. Such probability would be zero if prices were52

observed continuously, and it can be regarded as an analytical correction term account-53

ing for discretely observed prices. To give a sense of the importance of correcting by this54

term, Figure 1 displays the probability that daily opening or closing prices coincide with55

the highest or lowest prices for U.S. common stocks from 1926 to 2021. The probability56

ranges between 25% for large stocks and 75% for small stocks in the last century and57

decreased in the last two decades. Thus, while correcting by this term is less significant58

for more recent periods, it becomes essential when analyzing historical samples, and it59

is increasingly important for smaller stocks. Moreover, this term also depends on the60

sampling frequency used for estimation. Indeed, if intraday—instead of daily—prices are61

used, then the number of trades observed per time interval decreases, and the probability62

that opening or closing prices coincide with the highest or lowest prices increases. Thus,63

this term corrects a bias that varies in the time series and the cross-section and depends64

on the sampling frequency of open, high, low, and close prices.65

[Insert Figure 1 about here.]66

Next, we combine our estimators to construct an efficient estimator. All estimators67
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are asymptotically unbiased, so their efficient combination is obtained by minimizing the68

estimation variance. We proceed as follows. First, we identify two estimators that achieve69

minimum variance when the spread is small compared to volatility. Second, we identify70

two other estimators that exhibit the opposite behavior and achieve minimum variance71

when the spread is large compared to volatility. Third, we show that these estimators can72

be written as moment conditions and apply the generalized method of moments (Hansen,73

1982) to construct our efficient estimator that achieves minimum variance across small74

and large spreads. By minimizing the estimation variance, our efficient estimation also75

minimizes the upward bias that arises in small samples due to the methods employed to76

guarantee non-negativity of the spread estimates (Jahan-Parvar and Zikes, 2023).77

We compare our efficient estimator with the seminal Roll (1984) estimator and with78

those by Corwin and Schultz (2012) and Abdi and Ranaldo (2017) as they have been79

shown to deliver more accurate estimates than previous approaches.80

In our simulation experiments, we study the bias and variance of the estimators. In81

agreement with our theoretical analysis, we find that other estimators understate the82

spread in simulations that use few trades per period, and the estimate shrinks to zero83

as the number of trades declines. Instead, our estimator remains unbiased even for84

simulations where we expect, on average, only a single trade per period. For simulations85

that use many trades per period, we find that all estimators are asymptotically unbiased,86

and they correctly estimate the spread used in the simulation. In this case, the best87

estimator has the lowest variance because it delivers unbiased estimates with higher88

precision. We find that the estimator by Corwin and Schultz (2012) has a lower variance89

than Abdi and Ranaldo (2017) for small spreads, while it has a higher variance for large90

spreads. Our efficient estimator provides the most precise estimates with a variance lower91

than the other approaches across low and large spreads. In summary, our estimator92

dominates other approaches by yielding unbiased estimates when other estimators are93
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biased and achieving minimum variance when all estimators are unbiased.94

Our empirical analysis uses the Center for Research in Security Prices (CRSP) U.S.95

stock database to compute bid-ask spread estimates from daily prices. We compare96

them with the effective spread computed by matching high-frequency trades with quotes97

via the NYSE Trades and Quotes (TAQ) database in the sample period 1993–2021.98

The simulation-based results carry over to the empirical data. Our efficient estimator99

dominates all other estimators, and it is more correlated and considerably closer to the100

high-frequency benchmark in each sub-period, in each market venue, for small and large101

stocks, both in time series and cross-sectional studies, for each sample size and evaluation102

metric.103

We illustrate the broad applicability of our estimator in low- and high-frequency both104

within and outside the U.S. stock market. First, we revisit historical spread estimates105

from daily prices in the U.S. stock market since 1926. For small stocks, our estimator106

closely overlaps with the high-frequency benchmark. In contrast, other estimators under-107

state the spread, and their bias increases for older sample periods, mirroring that these108

estimators are more biased when trading becomes less frequent. Indeed, their bias re-109

duces for larger stocks, which are presumably traded more frequently. For all stocks, we110

find that the end-of-day quoted spread is higher than our effective spread estimates by a111

factor of two. Thus, our estimator reproduces previous findings that the quoted spread112

overstates the effective spread finally paid by traders by up to 100% (Huang and Stoll,113

1994; Petersen and Fialkowski, 1994; Bessembinder and Kaufman, 1997; Bacidorea, Ross,114

and Sofianosa, 2003), due to dealers offering a better price than the quotes, also known115

as trading inside the spread (Lee, 1993). In summary, our estimator makes available the116

most realistic effective spread estimates for the U.S. stock market from 1926 to the advent117

of high-frequency data.118

Second, we show that our estimator can exploit intraday prices to improve the spread119
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estimate significantly and that this approach is more effective than increasing the estima-120

tion sample with more daily data. Using minute prices—instead of daily—increases the121

correlation of the estimates with the benchmark from 56.17% to 88.79% in the challeng-122

ing sample from October 2003 to December 2021, where the spread is small compared to123

volatility. The fraction of non-positive estimates reduces from 34.15% to 0.02%, and the124

upward bias induced by resetting negative estimates to zero essentially vanishes (Jahan-125

Parvar and Zikes, 2023). These results show that our estimator can be applied at any126

frequency, and, in this sense, it reconciles the high-frequency and low-frequency litera-127

ture. Moreover, by relying on transaction prices only, our estimator is insensitive to the128

quality of quote data, which causes issues in measuring effective spreads by matching129

trades with quotes in fast and competitive markets (Holden and Jacobsen, 2014).130

Third, we apply the estimator outside the stock market and analyze low- and high-131

frequency estimates for cryptocurrencies. We find that other estimators are dominated132

by their downward bias in high frequency and produce a tenfold difference between esti-133

mates that use daily or intraday prices. Instead, our estimator produces estimates from134

daily prices that closely overlap with those from hourly and minute prices. We conclude135

that our efficient estimator can potentially reduce a significant source of non-standard136

errors (Menkveld et al., 2023) in the measurement of transaction costs.137

This paper is structured as follows. Section 1 reviews high- and low-frequency estima-138

tors of the effective bid-ask spread. Section 2 introduces our methodology and develops139

our estimators. Sections 3 and 4 present our simulation and empirical results, respectively.140

Section 5 illustrates the advantages and wide applicability of our efficient estimator. Fi-141

nally, Section 6 concludes. To guarantee reproducibility, we make available software for142

the R statistical environment (R Core Team, 2020) that implements all the results in143

this paper. To facilitate adoption, we make our efficient estimator available in various144
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programming languages. We also release open data containing all our spread estimates.2145

1 The Effective Bid-Ask Spread146

For a given trade, the relative effective bid-ask spread S is defined as:147

S =
2D(P − P̃ )

P̃
, (1)

where P is the observed transaction price, P̃ is the unobserved fundamental price, and148

D is a direction of trade indicator taking the value +1 for buyer-initiated trades, and −1149

for seller-initiated trades. As the fundamental price P̃ is unobserved, different ways of150

estimating the spread exist, which depend on different proxies for P̃ . Here, we review151

popular measures of the effective bid-ask spread that arise from different proxies. We152

classify these measures into two groups. First, we discuss measures that require trade153

and quote data and are typically used in the high-frequency literature. Then, we discuss154

measures that only require transaction prices and are typically used in the low-frequency155

literature.156

1.1 High-Frequency Measures of Effective Spreads157

One way to measure effective spreads is obtaining a proxy of the fundamental price from158

trade and quote data to plug in Equation (1). This class of estimators measures the159

distance of transaction prices from the given proxy. Popular proxies are the quoted160

midpoint, the weighted midpoint, and the microprice.161

2The code implementing the estimator is available at https://github.com/eguidotti/bidask. The
code to reproduce the paper and the data containing spread estimates will be available upon publication.
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1.1.1 Quoted Midpoint162

A simple proxy of the fundamental price is the average of the bid and ask prices. The163

quoted midpoint PM is defined as:164

PM =
PA + PB

2
, (2)

where PA and PB are the ask and bid prices, respectively. Using P̃ = PM in Equation (1)165

we obtain the so-called midpoint effective spread (Hagströmer, 2021). This midpoint-166

based measure is required in U.S. regulations (SEC current Rule 605, Rule 11ac1-5 before167

2007) and is often referred to as the effective spread. Here, we use the more precise168

terminology of Hagströmer (2021) to highlight that effective spreads are not observable169

and depend on the choice of the fundamental price. The midpoint effective spread is one170

possible measure of effective spreads.171

1.1.2 Weighted Midpoint172

Hagströmer (2021) challenges using the quoted midpoint as a proxy of the fundamental173

price and shows that it leads to overstating effective spreads in markets with discrete174

prices and elastic liquidity demand. To overcome this problem, he proposes to use the175

weighted midpoint:176

PW =
PAQB + PBQA

QA +QB

, (3)

where QA and QB are the depths quoted at the ask and bid prices, respectively.177

1.1.3 Microprice178

Stoikov (2018) criticizes the midpoint and weighted midpoint as proxies of the fundamen-179

tal price for generating autocorrelated returns and proposes an alternative proxy—the180

microprice—that is a martingale by construction. We refer the reader to Stoikov (2018)181
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for the construction of the microprice and to Hagströmer (2021) for a comparison of182

effective spreads obtained with the midpoint, weighted midpoint, and microprice.183

1.2 Low-Frequency Measures of Effective Spreads184

Another way to measure effective spreads is by introducing desirable assumptions about185

the data-generating process to develop an estimator that does not require an explicit proxy186

of the fundamental price. This class of estimators measures the distance of transaction187

prices from a fundamental price implicitly defined by the model’s assumptions.188

Several contributions (Roll, 1984; Hasbrouck, 2009; Corwin and Schultz, 2012; Abdi189

and Ranaldo, 2017) have proposed to derive an estimator of the effective spread by writing190

Equation (1) in logarithmic prices p = log(P ) such that:191

p = p̃+ Z , (4)

where Z = S/2D is the bid-ask bounce and the basic assumptions are that:192

Assumption 1 Fundamental returns are not serially correlated.193

Assumption 2 Fundamental returns are uncorrelated with bid-ask bounces.194

Assumption 3 Bid-ask bounces are uncorrelated and have zero mean.195

Assumptions 1–3 are the representative set of assumptions underlying previous contri-196

butions. However, they are more general than those required by each of them. For197

instance, the Roll (1984) model further assumes that buys and sells are equally likely.198

The Bayesian approach by Hasbrouck (2009) requires that fundamental returns are i.i.d.199

with normal distribution. Corwin and Schultz (2012) rely on the idea that high prices200

are buyer-initiated and low prices are seller-initiated and they model the fundamental201

price with a geometric Brownian motion with zero-mean returns, which is also used by202

10



Abdi and Ranaldo (2017). They further assume that spread and volatility are constant,203

ruling out stylized facts such as heteroscedasticity and jumps. To mitigate these restric-204

tions, they advocate in favor of measuring the spread over two-day rolling periods and205

averaging these estimates. However, Jahan-Parvar and Zikes (2023) show this approach206

produces inconsistent estimators. Finally, one important limitation of all the previous207

contributions is that they do not account for the discrete nature of trades. Specifically,208

they require (explicitly or implicitly) the restrictive assumption that there is always at209

least one trade between two time instants such that prices are observed continuously.210

Overall, the class of estimators based on Assumptions 1–3 aims at measuring the211

distance of transaction prices from a fundamental price with serially uncorrelated returns212

that are not correlated with bid-ask bounces. Such a class of estimators is the central213

focus of this paper, and we review the most popular approaches below. Other works alter214

the definition of the fundamental price by adding a dependence between the fundamental215

returns and the bid-ask bounces to accord an informational role to the trade directions,216

and they are outside the scope of this paper (see e.g., Chen, Linton, and Yi, 2017).217

1.2.1 Close Prices218

The seminal work by Roll (1984) computes the serial covariance of observed returns to219

estimate the effective spread from closing prices. He shows that:220

S2 = −4Cov[∆ct,∆ct−1] , (5)

where S2 is the mean squared spread in the estimation sample and ∆ct = ct− ct−1 where221

ct is the closing log-price of period t. The main limitation of this approach is that it222

has a large estimation variance, and the squared spread turns out to be negative in 50%223

of the cases using a yearly sample of daily closing prices (Roll, 1984). To improve the224

estimation accuracy, Hasbrouck (2009) proposes a Gibbs estimation of the Roll model.225
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However, the method requires an iterative procedure, is computationally expensive, and226

needs many observations to converge.3227

1.2.2 High and Low Prices228

Corwin and Schultz (2012) propose an alternative estimator from high and low prices229

with smaller variance than the Roll (1984) estimator. Their methodology is based on230

the idea that high (low) prices are almost always buy (sell) trades. Hence, the high-low231

ratio incorporates both the volatility of the fundamental price and the bid-ask spread.232

As volatility increases with the return interval, while the spread does not, it is possible233

to derive a spread estimator from the high-low ratios over different time intervals. To234

link the high-low ratios with volatility, they assume that the fundamental price follows a235

geometric Brownian motion and use the equations by Parkinson (1980) and Garman and236

Klass (1980). However, these equations hold only if the price is observed continuously237

and are biased in practice as the number of trades within any time interval is finite.238

1.2.3 Close, High, and Low Prices239

Abdi and Ranaldo (2017) propose an estimator that jointly uses closing and high-low240

prices to achieve smaller variance than the Roll (1984) estimator and smaller bias than241

the Corwin and Schultz (2012) estimator. They show that:242

S2 = 4E[(ct−1 − ηt−1)(ct−1 − ηt)] , (6)

3From Hasbrouck’s website (https://pages.stern.nyu.edu/~jhasbrou/Research/GibbsCurrent/
gibbsCurrentIndex.html): “I often receive inquiries regarding Gibbs estimates formed at higher fre-
quencies (e.g., monthly or weekly). I don’t provide these estimates due to concerns about their reliability.
The 2009 paper describes some of the issues that arise. Briefly, the prior distributions used here are dif-
fuse (to ensure that the posteriors are data-dominated). The priors are generally, however, biased. As
the sample size drops, the posteriors start resembling the priors, and the bias problem becomes more
acute. The only way out of this is to put more structure on the priors. This is not impractical, but it is
application-specific.”
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where ηt = (ht + lt)/2 is the average of the high and low log-prices. However, their243

methodology also requires that the fundamental price follows a geometric Brownian mo-244

tion with continuously observed prices. As a consequence, the estimator is still biased.245

Moreover, it does not exploit the full information set of open, high, low, and close prices246

to further improve the spread estimate.247

2 Methodology248

This paper relaxes the assumption that prices are observed continuously—and several249

other assumptions that were required by previous contributions—by deriving bid-ask250

spread estimators using Equation (4) under only Assumptions 1–3. By accounting for251

the discrete nature of trades, we drastically reduce the estimation bias. By exploiting252

the full information set of open, high, low, and close prices, we minimize the estimation253

variance.254

We start by introducing the indicator variable:255

τt =


0 if ht = lt = ct−1

1 otherwise

(7)

that equals 0 if the highest price matches the lowest price and the previous close, and256

it equals 1 otherwise. The value τt = 0 indicates that either i) all trades in period t are257

executed at the previous closing price, which is increasingly likely when the number of258

trades per period is smaller, or ii) there is no trading and the open, high, low, and close259

prices of period t are filled with the previous close. The value τt = 1 is the complementary260

case and ensures that prices are not forward-filled.261

We now derive an estimator from close-to-open and open-to-mid (de-meaned) returns262
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by considering their serial covariance:263

Cov[ηt − ot, ot − ct−1] = E[(ηt − ot)(ot − ct−1)] , (8)

where ηt = (ht + lt)/2 is the average of the high and low log-prices, ot is the opening264

log-price, ct−1 is the closing log-price of the previous time interval, and the de-meaned265

returns are defined as follows:266

rt = rt − τt
E[rt]
E[τt]

. (9)

In Appendix A.1, we prove that the covariance in Equation (8) is equal to:267

Cov[ηt − ot, ot − ct−1 | τt = 1]P[τt = 1] . (10)

Next, we replace observed prices with fundamental prices and bid-ask bounces as given in268

Equation (4). As fundamental returns are not autocorrelated (Assumption 1), and they269

are also uncorrelated with bid-ask bounces (Assumption 2), Equation (10) is equal to:270

Cov[Zηt − Zot , Zot − Zct−1 | τt = 1]P[τt = 1] , (11)

where Zot is the bid-ask bounce at the open, Zct−1 is the bid-ask bounce at the previous271

close, and Zηt = (Zht + Zlt)/2. Conditional on τt = 1, prices are not forward-filled, and272

thus bid-ask bounces at time t are uncorrelated with bid-ask bounces at time t − 1 by273

assumption. Moreover, they have zero mean (Assumption 3). Thus, Equation (11) is274

equal to:275

E[ZηtZot − Z2
ot | τt = 1]P[τt = 1] . (12)

We now need to compute the expectation in Equation (12). To this end, we recall that276
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Zot = Sot/2Dot and thus Z2
ot = S2

ot/4. Hence, we have:277

E[Z2
ot | τt = 1] = E[S2

ot ]/4 . (13)

and the remaining term is calculated in Appendix A.2:278

E[ZηtZot | τt = 1] =
E[S2

ot ]

4

P[ot = ht | τt = 1] + P[ot = lt | τt = 1]

2
. (14)

Finally, we substitute Equations (13)–(14) into Equation (12) and solve for the spread.279

Following the calculations in Appendix A.3, we obtain that the mean squared spread is:280

S2
o = E[S2

ot ] =
−8E[(ηt − ot)(ot − ct−1)]

P[ot ̸= ht, τt = 1] + P[ot ̸= lt, τt = 1]
. (15)

2.1 Efficient Estimation of Effective Spreads281

So far, we have derived an estimator from close-to-open and open-to-mid returns. How-282

ever, the same methodology can be used to derive estimators from other combinations283

of prices. This section identifies four estimators that achieve minimum variance under284

different conditions. Then, we optimally combine the four estimators to minimize the285

estimation variance under any condition and obtain an efficient estimator.286

For illustration, we consider the case where high and low prices always differ from287

open or close prices, and returns have zero mean such that rt = rt. From Equation (15)288

we obtain that the spread is proportional to S2
o = E[(ηt − ot)(ot − ct−1)] and thus the289

estimation variance is proportional to:290

Var[Ŝ2
o ] = Var[(ηt − ot)(ot − ct−1)] . (16)

Equation (16) shows that the estimation variance depends on the volatility of observed291
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returns. Thus, it depends on the volatility of the fundamental price and the size of the292

bid-ask spread. We now consider two complementary cases where the spread is either293

small or large compared to the volatility of the fundamental price.294

In the first case, S → 0 and observed prices p coincide with fundamental prices p̃. In295

this case, the estimation variance is proportional to:296

Var[Ŝ2
o ] = Var[(η̃t − õt)(õt − c̃t−1)] = Var[η̃t − õt]Var[õt − c̃t−1] . (17)

Equation (17) shows that the estimation variance decreases with the sampling frequency297

because the volatility of the fundamental price reduces at higher frequencies and makes298

the estimation variance smaller. In other words, we obtain that the bid-ask spread should299

be estimated with the highest frequency data possible and that estimators considering300

higher time lags are dominated by estimators considering the smallest possible lag. The301

estimator in Equation (15) is optimal because it considers subsequent close-to-open and302

open-to-mid returns. An equivalent estimator is obtained by considering subsequent mid-303

to-close and close-to-open returns, as we expect open-to-mid returns to be distributed304

similarly to mid-to-close returns. All other estimators have larger variance and are dom-305

inated by these two because they require higher time lags.306

In the second case, S → ∞ and observed returns are driven by bid-ask bounces.307

Moreover, as the spread is large, high prices are buys, and low prices are sells. In this308

case, Zηt = (Zht +Zlt)/2 = S/4−S/4 = 0 and the estimation variance is proportional to:309

Var[Ŝ2
o ] = Var[(Zηt − Zot)(Zot − Zct−1)] = Var[Zot ]

2 + Var[Zot ]Var[Zct−1 ] . (18)

Equation (18) shows that the estimation variance can be reduced by using the mid price310

ηt−1 (Var[Zηt−1 ] = 0) instead of the closing price ct−1 (Var[Zct−1 ] → ∞). In this case,311

the estimation variance becomes Var[Zot ]
2, which is strictly smaller than that in Equa-312
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tion (18). In other words, it is convenient to consider subsequent mid-to-open and open-313

to-mid returns when the spread is large compared to volatility. An equivalent estimator314

is obtained by considering subsequent mid-to-close and close-to-mid returns, as we ex-315

pect i) mid-to-close returns to be distributed similarly to open-to-mid returns and ii)316

close-to-mid returns to be distributed similarly to mid-to-open returns.317

Table 1 summarizes the four estimators derived from the combinations of prices dis-318

cussed above. We call these estimators Discrete Generalized Estimators (DGEs) because319

they account for the fact that prices unfold in discrete time and generalize previous ap-320

proaches that rely on continuously observed prices. For instance, the estimator by Abdi321

and Ranaldo (2017) can be regarded as a particular case of our CHL estimator in Table 1.322

Indeed, if we require prices to be observed continuously, they are never forward-filled and323

the closing price always differs from the high or low prices. Therefore, πc = −4 and324

for zero-mean returns the CHL estimator becomes S2 = −4E[(ηt − ct−1)(ct−1 − ηt−1)] =325

4E[(ct−1 − ηt)(ct−1 − ηt−1)], which is identical to the estimator in Equation (6). Thus,326

our CHL estimator can be regarded as a generalization of the Abdi and Ranaldo (2017)327

estimator that provides an analytical correction term accounting for discretely observed328

prices.329

[Insert Table 1 about here.]330

Next, we combine our DGEs to minimize the estimation variance and obtain the331

Efficient DGE (EDGE). To this end, we notice that each DGE can be written as a moment332

condition so that their efficient combination is obtained by applying the Generalized333

Methods of Moments (GMM) (Hansen, 1982). As discussed above, the OHL estimator334

in Table 1 is expected to perform similarly to CHL, and OHLC is expected to perform335

similarly to CHLO. However, OHL and OHLC measure the spread at the open while336

CHL and CHLO measure the spread at the close. We thus combine OHL with CHL and337
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OHLC with CHLO to obtain two moment conditions that measure the average spread at338

the open and close:339

E
[
2S2 − πo(ηt − ot)(ot − ηt−1)− πc(ηt − ct−1)(ct−1 − ηt−1)

]
= 0 , (19)

340

E
[
2S2 − πo(ηt − ot)(ot − ct−1)− πc(ot − ct−1)(ct−1 − ηt−1)

]
= 0 , (20)

where we have set S2 = (S2
o+S2

c )/2 for notational convenience. These moment conditions341

can be written as E[S2 − xi,t] = 0 where x is opportunely defined. By applying GMM,342

the efficient estimator is given by:343

S2
GMM = argmin

S2

∑
ij

(S2 − µi)Wij (S
2 − µj) , (21)

where µi = E[xi,t] and W = Ω−1 is the inverse of the covariance matrix Ω = Var[S2−xi,t],344

which simplifies to Ω = Var[xi,t] as the variance is translation invariant. Therefore, we345

have a particular case of GMM where the optimal weighting matrix does not depend346

on the minimizing variable, and the problem reduces to the minimization of a quadratic347

form. By differentiating Equation (21), setting the derivative equal to zero, and solving348

for S2, we obtain:349

S2
GMM =

∑
i

wiµi with wi =

∑
j Wij∑
i,j Wij

. (22)

Finally, applying GMM in Equation (22) with the two moment conditions above and a350

diagonal covariance matrix Ω gives our Efficient Discrete Generalized Estimator (EDGE):351

S2
EDGE = w1E[x1,t] + w2E[x2,t] , (23)

352

x1,t =
πo

2
(ηt − ot)(ot − ηt−1) +

πc

2
(ηt − ct−1)(ct−1 − ηt−1) ,

x2,t =
πo

2
(ηt − ot)(ot − ct−1) +

πc

2
(ot − ct−1)(ct−1 − ηt−1) ,

(24)
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w1 =
Var[x2,t]

Var[x1,t] + Var[x2,t]
, w2 =

Var[x1,t]

Var[x1,t] + Var[x2,t]
. (25)

For estimation, the usual sample counterparts replace the expectations and variances,353

respectively.354

2.2 Negative Estimates355

Our estimators and those of Roll (1984), Corwin and Schultz (2012), and Abdi and356

Ranaldo (2017) are formal estimators for the mean squared spread S2. However, the357

estimate Ŝ2 may become negative in small samples due to statistical fluctuations. This358

is an issue because a negative squared spread is not mathematically nor economically359

meaningful.360

To guarantee the non-negativity of spread estimates, it is common to reset negative361

values to zero by applying the transformation:362

Ŝ =

√
max

{
0 , Ŝ2

}
. (26)

Although this approach maintains non-negativity, it can lead to a substantial number363

of zero estimates, which can be problematic for certain applications like portfolio sort-364

ing. In an effort to mitigate this drawback, earlier studies have explored calculating the365

squared spread across rolling time intervals, resetting negative estimates to zero within366

these intervals, and subsequently computing the average across the entire estimation pe-367

riod. However, Jahan-Parvar and Zikes (2023) have shown that this strategy introduces368

a strong upward bias that does not decline as the sample size increases, making the esti-369

mates inconsistent. They document that volatility is the primary driver of the bias and370

that inconsistent measures fail to replicate some well-known results in empirical finance.371

Following their recommendations, we apply the transformation in Equation (26) to the372

final estimate. This ensures that the bias declines as the sample size increases and the373
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estimate Ŝ is consistent.374

Another way to produce consistent estimates while avoiding zero values is to take the375

square root of the modulus of the final estimate Ŝ2. This proposition is motivated by the376

positive correlation between negative estimates and minus the spread that we have found377

empirically (see Internet Appendix I.2). However, for the sake of comparability with prior378

studies, we reset negative estimates to zero within this paper, leaving the exploration of379

alternative approaches for future research.380

3 Simulation Results381

In this section, we perform Monte Carlo simulations to study the accuracy of EDGE and382

its building blocks. We compare the results with the seminal Roll (1984) estimator and383

with the estimators proposed more recently by Corwin and Schultz (2012) and Abdi and384

Ranaldo (2017). Throughout the paper, we refer to these estimators with ROLL, CS,385

and AR, respectively. The CS estimator is adjusted for overnight returns as described in386

Corwin and Schultz (2012).387

3.1 Setup388

For ease of comparison, we use the simulation setup of Corwin and Schultz (2012), also389

used in Abdi and Ranaldo (2017). Specifically, we simulate 10,000 months of data where390

each month consists of 21 trading days and each day consists of 390 minutes. For each391

minute of the day, the fundamental price P̃m is simulated as P̃m = P̃m−1e
σz with P̃0 = 1,392

where σ is the standard deviation per minute and z is a random draw from a standard393

Gaussian distribution. The daily standard deviation equals 3%, and the standard devia-394

tion per minute equals 3% divided by
√
390. Trade prices are defined as P̃m multiplied395

by one minus (plus) half the assumed bid-ask spread, and we use a 50% chance for bid396
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(ask) prices. Prices are assumed to be observed with a given probability. Daily high and397

low prices equal the highest and lowest prices observed during the day. Open and close398

prices equal the first and the last prices observed in the day. If no trade is observed for a399

given day, then the previous day’s closing price is used as the open, high, low, and close400

prices for that day.401

3.2 Results402

We start by studying the bias of the various estimators. To this end, we simulate 10,000403

months of daily prices and estimate the spread using the whole time series. These simu-404

lations use a constant spread of 1%, and the probability of observing a trade ranges from405

1/390 to 1, such that the expected number of daily trades ranges from 1 to 390.406

Figure 2 shows how the spread estimate varies in function of the trading frequency.407

We find that all estimators are unbiased and correctly estimate a spread equal to 1%408

when we use 390 trades per day. However, their behavior is substantially different when409

the trading frequency declines. Indeed, CS estimates a spread of 0.75% in the simulation410

using 100 trades per day. Moreover, its downward bias increases rapidly as the trading411

frequency declines further, and it returns an estimate of zero in the simulations that use412

less than ten trades per day. AR is less sensitive to the trading frequency, but it is still413

significantly biased in the simulations that use only a few trades per day. Instead, EDGE414

produces unbiased estimates regardless of the number of trades, suggesting it works well415

in practice even for assets that trade infrequently. These results demonstrate how CS416

and AR strongly rely on the assumption that assets are traded continuously and produce417

downward biased estimates when that assumption is not satisfied. Our more general418

methodology provides an analytical correction term that accounts for infrequent trading419

and produces asymptotically unbiased estimates.420

[Insert Figure 2 about here.]421
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Next, we study the variance of the estimators by computing the standard deviation422

of monthly spread estimates across 10,000 simulations, where each month consists of 21423

trading days. These simulations use 390 trades per day to ensure that all estimators are424

unbiased. In this setting, an estimator with lower variance is strictly preferable to one425

with higher variance because it produces unbiased estimates with higher precision.426

Figure 3 reports the standard deviation of spread estimates in simulations that use a427

constant spread ranging from 0.50% to 8.00%. CS is preferable to AR for smaller spreads,428

while AR is for larger spreads. EDGE is always the best estimator, providing the most429

precise estimates with minimum variance uniformly across low and large spreads.430

To shed light on the performance of EDGE, we also report the behavior of its building431

blocks. In agreement with the discussion in Section 2.1, Figure 3 shows that OHL is432

equivalent to CHL, and OHLC is equivalent to CHLO. Moreover, the variance of OHLC433

and CHLO decreases for smaller spreads. On the contrary, the variance of OHL and CHL434

decreases for larger spreads. EDGE exploits the opposite behaviors of these estimators435

to produce estimates with minimum variance uniformly across low and large spreads.436

Indeed, Equation (25) shows that EDGE puts more weight on the OHLC and CHLO437

estimators for smaller spreads, while it puts more weight on the OHL and CHL estimators438

for larger spreads. The result is an estimator that achieves minimum variance across small439

and large spreads. For an additional comparison, we also report the results for the GMM440

estimator in Equation (22) where we set the weighting matrix equal to the identity matrix.441

This estimator has roughly the same variance of EDGE for spreads between 2.00% and442

5.00%, but its variance is worse for smaller and larger spreads. We conclude that the443

weighting matrix used for EDGE is effective in minimizing the estimation variance.444

[Insert Figure 3 about here.]445

Finally, Table 2 reports the mean and standard deviation of monthly spread estimates446

from daily prices across 10,000 simulations. Panel A uses 390 trades per day to simulate447
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frequent trading. Here, estimators other than ROLL produce mean spreads close to the448

actual values used in the simulation and are essentially unbiased. ROLL is affected by449

an upward bias for small spreads that arises from truncating negative estimates and is450

exacerbated by the large estimation variance. EDGE outperforms all other estimators in451

these simulations by producing unbiased estimates with the lowest variance across small452

and large spreads. Panel B introduces infrequent trading in the simulations. We find that453

EDGE outperforms its building blocks by producing estimates with lower variance and454

other estimators by producing estimates with lower bias. AR seems to perform similarly455

to EDGE for simulations that use a spread of 0.50%, but this is due to the downward bias456

for infrequent trading being counterbalanced by the upward bias induced by truncating457

negative estimates. Although CS produces estimates with low variance, these estimates458

are strongly biased. For instance, CS estimates a spread of 0.04% where the actual spread459

used in the simulation is 1.00%.460

[Insert Table 2 about here.]461

In summary, our estimator yields unbiased estimates when other estimators are biased462

and achieves minimum variance when all estimators are unbiased.463

4 Empirical Results464

In this section, we investigate the performance of the estimators on empirical data. To465

evaluate the performance, we first need to define the ground truth, that is, the spread466

that serves as the benchmark for the evaluation. Following the literature, we use the467

effective spread obtained by matching high-frequency trade and quote data to evaluate468

the performance of the various estimators that only require commonly available daily469

price data.470

23



4.1 Data471

To compute bid-ask spread estimates (i.e., EDGE, AR, CS, ROLL), we obtain daily prices472

from the CRSP US Stock Database in the period 1926–2021 for all NYSE, AMEX, and473

NASDAQ stocks with CRSP share codes of 10 or 11 (i.e., U.S. common shares). To ensure474

that all the estimates are obtained from transaction prices, we keep only observations for475

which the open, high, low, and close prices are directly available. CRSP reports quotes476

derived from bid and ask prices if transaction prices are unavailable, and a dash in front of477

the price marks these values. We consider these non-transaction-based prices as missing478

values. Then, we drop the days where the high, low, or close price is missing. We also479

drop days where the open or close prices are outside the high-low range or where the low480

price is higher than the high price.481

We match CRSP and TAQ daily data using CUSIP identifiers and tickers. First, we482

reconstruct the time series of CUSIPs for each KYPERMNO in CRSP. Similarly, we recon-483

struct the time series of TICKERs for each KYPERMNO in CRSP. Then, we compute the484

time series of CUSIPs for each SYMBOL in TAQ using the Monthy TAQ Master files for485

1993–2009 and the Daily TAQ Master files for 2010–2021. Finally, we merge the daily486

datasets by matching observations with the same date, with the same CUSIP, and where487

the TAQ’s SYMBOL is equal to the TICKER in CRSP. Our identification strategy allows us488

to match 99% of the stocks in CRSP.489

For each stock-month, we estimate the spread from daily prices with EDGE, AR,490

CS, and ROLL and drop the estimate for all the estimators if it is missing for any of491

them. For instance, EDGE cannot be computed if open prices are missing, and ROLL492

cannot be computed if a stock-month contains only two daily observations. In such cases,493

we drop the corresponding estimate for all estimators. We use no explicit cutoff for the494

number of observations in a given stock-month. The cutoff is implicitly determined by495

the requirements of the most stringent estimator. Ultimately, the covariance requires at496
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least two returns to be computed, meaning we need at least three daily observations in a497

stock-month. In our CRSP-TAQ merged sample, the frequency of missing estimates for498

each of the estimators is 1.24% for EDGE, 0.48% for CHL, 1.02% for OHL, 1.17% for499

CHLO, 1.02% for OHLC, 0.03% for AR, 0.03% for CS, and 0.14% for ROLL. Moreover,500

when CHL is missing and CS is not, the CS estimate is zero in 90% of the cases. When501

CHL is missing and AR is not, the AR estimate is zero in 100% of the cases. These are502

mostly cases when the stock always trades at the same price so that the denominator of503

our estimators is zero and the estimate is undefined. In such cases, a missing estimate504

should be preferable to an implicit imputation of zero produced by the other estimators.505

We rely on the TAQ database from May 1993 to December 2021 to compute the506

benchmark effective spread. Daily spreads are obtained via the Wharton Research Data507

Services (WRDS) Intraday Indicators using Monthly TAQ from 1993 to 2003 and Daily508

TAQ from 2004 onward, according to the methodology described in Holden and Jacobsen509

(2014). For each month, we winsorize the daily spreads at 99.5% (one-sided) and compute510

the root mean squared spread for each stock. We refer to this measure as HJ.511

To ensure that our results are robust to the choice of the benchmark, we also com-512

pute spreads using the weighted midpoint as described in Hagströmer (2021). First, we513

replicate the daily spread measures from the WRDS Intraday Indicators using the Daily514

TAQ database in the period 2004–2021 and we recompute our monthly HJ benchmark.515

The benchmark achieves 99.5% correlation with the one obtained using the estimates516

pre-computed by WRDS. Next, we replace the midpoint with the weighted midpoint to517

generate the effective spreads described in Hagströmer (2021). The correlation between518

the monthly benchmarks using the midpoint and weight-midpoint effective spreads is519

99.1%. We have evaluated the estimators using both benchmarks, and all the results520

are fully consistent. Throughout the paper, we use the midpoint benchmark as it is pre-521

computed by WRDS also for the Monthly TAQ database in the period 1993–2003, where522
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the National Best Bid and Offer (NBBO) is not directly available and matching trades523

with quotes poses several challenges (Holden and Jacobsen, 2014).524

4.2 Results525

Our CRSP-TAQ merged sample consists of about 1.6 million stock-month spread esti-526

mates for each estimator in the sample period from May 1993 to December 2021. In527

Table 3, we report summary statistics and several evaluation metrics for the estimates.528

EDGE achieves the highest correlation with the HJ benchmark, the lowest mean absolute529

percentage error (MAPE), root mean squared error (RMSE), and the smallest fraction530

of zero estimates.4531

[Insert Table 3 about here.]532

The remainder of this section is dedicated to a deeper comparison across the estimators533

in a cross-sectional, time-series, and panel-data setting.534

4.3 Cross-Sectional Correlation535

Looking at cross-sectional correlations on a month-by-month basis allows us to evaluate536

the estimators’ ability to capture the cross-sectional distribution of spreads in differ-537

ent time periods. Given the effective spread benchmark Si,t for stock i at time t and538

the corresponding estimate Ŝi,t, we compute the cross-sectional correlation at time t as539

ρt = Cori[Si,t, Ŝi,t]. The month-by-month cross-sectional correlations for the various esti-540

mators are displayed in Figure 4. The correlation between EDGE and the effective spread541

benchmark is consistently higher than the correlations achieved by any other estimator542

throughout the whole period considered in the analysis.543

[Insert Figure 4 about here.]544

4The MAPE and RMSE are computed on log-spreads as described in Internet Appendix I.4.
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4.4 Time-Series Correlation545

Looking at time-series correlations on a stock-by-stock basis allows us to evaluate the546

ability of the estimators to capture the time-series distribution of spreads for different547

kinds of stocks. To this end, we split all stocks in deciles based on their market capital-548

ization. The size deciles are sorted by increasing market capitalization of each stock as549

its last listing date in CRSP. Then, given the effective spread benchmark Si,t for stock i550

at time t and the corresponding estimate Ŝi,t, we compute the time-series correlation for551

decile d as ρd = Cort,i∈d[Si,t, Ŝi,t]. The time-series correlations for each decile obtained552

with the various estimators are displayed in Figure 5. The correlation between EDGE553

and the effective spread benchmark is consistently higher than the correlations achieved554

by any other estimator for all types of stocks.555

[Insert Figure 5 about here.]556

4.5 Panel-Data Correlation557

Next, we analyze the performances across five dimensions: market venues, time periods,558

market capitalization, spread size, and trading frequency. When analyzing market venues,559

the groups correspond to NYSE, AMEX, and NASDAQ. For the time periods, we use560

those defined in Corwin and Schultz (2012) and Abdi and Ranaldo (2017). In addition,561

we extend the sample and include the more recent sub-period 2016–2021. For size groups,562

we sort stocks in quintiles based on their market capitalization at their last listing date563

in CRSP. Spread quintiles are sorted on the average effective spread throughout the life564

of the stock. For the trading frequency, we split stocks based on their average number of565

daily trades during the whole sample period. Then, given the effective spread benchmark566

Si,t for stock i at time t and the corresponding estimate Ŝi,t, we compute the correlation567

for group g as ρg = Cor(i,t)∈g[Si,t, Ŝi,t].568
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The results are summarized in Table 4 for market venues (Panel A), time periods569

(Panel B), market capitalization (Panel C), spread size (Panel D), and trading frequency570

(Panel E). One clear result emerges: EDGE outperforms all the alternative estimators571

in each market venue, sub-period, market capitalization, spread size, and for each trad-572

ing frequency by consistently achieving the highest correlation with the effective spread573

benchmark. To shed light on the performance of EDGE, we also report the behavior of574

its building blocks. In particular, it is natural to compare CHL with AR as they use the575

same information set of high, low, and close prices. As the main difference between the576

two estimators is that CHL accounts for infrequent trading, the outperformance of CHL577

compared to AR demonstrates the importance of relaxing the assumption that prices are578

observed continuously to ultimately improve empirical results. Table 4 further shows that579

any single building block OHL, CHL, OHLC, CHLO outperforms AR, CS, and ROLL.580

Finally, EDGE optimally combines its building blocks to provide an estimator that is581

superior to any of them taken individually.582

[Insert Table 4 about here.]583

In the Internet Appendix, we provide representative illustrations on individual stocks584

to investigate further the estimators’ performance (Section I.3). We also compare the585

estimators using additional evaluation metrics such as Spearman’s (rank) correlation586

(Table I.4), MAPE (Table I.5) and RMSE (Table I.6), and the fraction of zero estimates587

(Table I.7). Overall, EDGE achieves the highest rank correlation with the benchmark,588

the lowest MAPE and RMSE, and generates the lowest fraction of non-positive estimates.589

We also find that it achieves the best results when estimating first differences instead of590

spread levels (Table I.8) and when increasing the estimation window from one month to591

one year (Table I.9). It is also interesting to note that CS achieves a slightly lower MAPE592

and RMSE compared to EDGE in the following cases: a) NYSE stocks, b) recent periods,593

c) large stocks, d) small spreads, and e) frequent trading. Taken together, these are all594
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cases where the bid-ask spread is expected to be small and where the downward bias595

of the CS estimator may improve the estimate. Indeed, if the spread is expected to be596

small, then an estimator biased towards zero may yield better results. This observation597

suggests that, generally, a Bayesian approach may further improve the estimate when598

a good prior is available for specific applications. We leave such possibility for future599

research as we focus on an estimator of general applicability here.600

5 Applications601

To demonstrate the broad applicability of EDGE, we provide three representative ex-602

amples. The first revisits historical spread estimates from daily prices in the U.S. stock603

market since 1926. The second studies spread estimates obtained from intraday prices604

for U.S. stocks. Finally, the third applies the estimator outside the U.S. stock market605

and compares low- and high-frequency estimates for cryptocurrencies.606

5.1 Low-Frequency Estimates for the U.S. Stock Market607

Using CRSP data since 1926, we construct, for each month, three portfolios based on608

size according to the following procedure. First, we sort the stocks based on their market609

capitalization at the end of each month. Then, we select small-caps, mid-caps, and large-610

caps using the 50th and 80th percentiles as breakpoints. Finally, we compute monthly611

spread estimates for individual stocks and construct the average spread for each of the612

three portfolios in each month between 1926–1992 (CRSP sample) and 1993–2021 (CRSP-613

TAQ merged sample).5 The results are reported in Figure 6.614

[Insert Figure 6 about here.]615

5When EDGE cannot be computed, we use the CHL estimator in Table 1 that does not need open
prices. Open prices are missing in CRSP from July 1962 through June 1992.

29



Panel A displays the cross-sectional mean of spread estimates for small stocks. Ac-616

cording to EDGE, the spread was high in the 1930s, spiked in 1933 with peaks between617

10%-15%, decreased until the 1960s and increased again with a first peak of about 5%618

in 1963, a second peak of 7.5% in 1975, and a third peak of 10% in the early 1990s. In619

line with the idea that liquidity evaporates in times of crisis (Nagel, 2012), these years620

coincide with periods of financial downturn and economic recession, such as the Great621

Depression between 1929–41, the U.S. Banking Crisis of 1933, the Kennedy Slide of 1962,622

the 1973–1975 recession following the oil crisis, and the early 1990s recession in the United623

States. Following the electronization of financial markets in the 2000s, the spread de-624

creased significantly until the global financial crisis, when it spiked again in 2009 with a625

peak close to 5%. The spread has continued to reduce in the last decade, reaching the626

lowest level ever as of December 2021. In the CRSP-TAQ merged sample after 1993,627

the HJ benchmark closely follows this trend and overlaps with EDGE. Instead, CS and628

AR tend to underestimate the spread, particularly for older periods, mirroring that these629

estimators are biased when trading becomes increasingly infrequent. In the historical630

sample before 1993, we find that the gap between EDGE and the alternative estimators631

widens. EDGE is often larger than AR by a factor of two, and the difference is even632

more pronounced compared to CS. Given our benchmark result from the recent sample,633

we conjecture that the alternative estimators considerably underestimate the effective634

spread in the early sample.635

Panels B and C report the results for medium and large stocks, respectively. As636

expected, we find that larger stocks tend to have lower spreads than smaller stocks.637

Indeed, EDGE estimates an average spread that is typically below 2.5% for medium638

stocks and below 1% for large stocks. The gap with AR and CS decreases for larger639

stocks, mirroring that their bias reduces for stocks presumably traded more frequently.640

Figure 6 also reports end-of-day quoted spreads derived from CRSP. These spreads641
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are significantly higher than the effective spread benchmark in the sample period between642

1993 and the early 2000s. The historical sample also supports this finding before 1993,643

where quoted spreads are often higher than EDGE by a factor of two. We thus confirm644

earlier studies that the quoted spread overstates the effective spread finally paid by traders645

by up to 100% (Huang and Stoll, 1994; Petersen and Fialkowski, 1994; Bessembinder and646

Kaufman, 1997; Bacidorea, Ross, and Sofianosa, 2003), due to dealers offering a better647

price than the quotes, also known as trading inside the spread (Lee, 1993). We also find648

that quoted and effective spreads closely overlap in the last two decades, suggesting that649

this phenomenon has reduced over time and quoted spreads have become a better proxy650

of effective spreads following the electronization of financial markets.651

Finally, we notice that estimating spreads from daily prices leads to an upward bias652

that becomes increasingly evident in more recent periods and for larger stocks. For653

instance, EDGE estimates an average spread of 0.42% in December 2021 for large-caps,654

while the HJ benchmark is 0.06%. This bias arises in small samples due to the practice of655

resetting negative estimates to zero, which leads, on average, to overstating the spread,656

especially when the spread is small compared to volatility (Jahan-Parvar and Zikes, 2023).657

A way to mitigate this small-sample bias is to extend the estimation window with more658

daily observations. For instance, the average EDGE estimate using a yearly sample of659

daily prices is 0.22% in 2021 for large-caps, and yearly estimates generally achieve a660

higher correlation with the yearly benchmark (see Table I.9 in the Internet Appendix)661

compared to monthly estimates with the monthly benchmark (Table 4). Another way to662

improve the estimation is using intraday prices whenever available, as discussed in the663

next section.664
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5.2 High-Frequency Estimates for the U.S. Stock Market665

While the variance component of an asset return is proportional to the return interval,666

the spread component is not. Hence, we can rely on high-frequency prices to reduce the667

asset variance without altering the spread component and achieve a better signal-to-noise668

ratio to improve the spread estimate.669

For instance, let N be the sample size and consider estimates derived from a monthly670

sample of daily data (N = 21), a yearly sample of daily data (N = 252), or a monthly671

sample of minute data (N = 21 × 390). According to Equation (17), the estimation672

variance is roughly proportional to σ4
1/N where σ1 is the volatility per period, and the673

standard error is proportional to σ2
1/
√
N . For daily prices, σ1 = σ/

√
252 where σ is674

the volatility per year. For minute prices, σ1 = σ/
√
252× 390. Thus, estimates derived675

from a yearly sample of daily data have a standard error that is
√

252/21 = 3.5 times676

smaller than that obtained from a monthly sample of daily data. Estimates derived677

from a monthly sample of minute data have a standard error that is 3903/2 = 7,702678

times smaller. To put this in perspective, the enhancement factor of the sample using679

minute prices would be achieved by a sample of 1,245,699,037 daily prices, equivalent680

to approximately 5 million years of trading. From this analysis, we conclude that using681

intraday prices offers a more effective way to improve the spread estimate than increasing682

the sample size with more daily data.683

To illustrate how EDGE can substantially improve the estimation of bid-ask spreads684

using intraday prices, we proceed as follows. First, we aggregate trades into open, high,685

low, and close prices every minute using the Daily TAQ database from October 2003 to686

December 2021. Then, we estimate the spread with EDGE from the minute data for687

each stock-month. Finally, we compare the estimates derived this way with those derived688

from daily prices and the HJ benchmark.689

Figure 7 reports the results for large-cap stocks. These stocks are featured by tiny690
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spreads that are difficult to estimate in small samples due to their small signal-to-noise691

ratio, which causes a large fraction of non-positive estimates and generates an upward692

bias due to the practice of resetting negative estimates to zero (Jahan-Parvar and Zikes,693

2023). Indeed, we find that the EDGE estimates from daily prices are negative in 41% of694

stock-months, and they are higher than the HJ benchmark by 0.35% (35bps) on average.695

Instead, estimates derived from minute prices are negative in only 0.05% of stock-months,696

and their upward bias shrinks to zero (1bps).697

[Insert Figure 7 about here.]698

Next, we analyze the estimates for all stocks. This sample consists of 711,161 stock-699

month spread estimates derived from both minute and daily prices. We find that using700

minute prices reduces the fraction of negative estimates from 34.15% to 0.02% and signif-701

icantly improves all evaluation metrics. The Pearson’s (Spearman’s) correlation with the702

HJ benchmark increases from 56.17% (43.47%) to 88.79% (97.31%). The MAPE (RMSE)703

reduces from 23.68 (1.80) to 5.17 (0.41).704

Finally, we estimate spreads from minute prices using the Monthly TAQ database705

from May 1993 to July 2014. The Monthly TAQ data are identical to the Daily TAQ706

data except for two main differences. First, Monthly TAQ only reports raw quotes, while707

Daily TAQ includes an NBBO file that reports the highest bid price and lowest ask708

price among all available exchanges at each timestamp. Second, Monthly TAQ data are709

timestamped to the second while Daily TAQ data are timestamped to the millisecond.710

While these differences cause several problems in measuring effective spreads by matching711

trades with quotes (Holden and Jacobsen, 2014), they do not affect EDGE. Indeed, the712

correlation between the EDGE estimates obtained with Monthly TAQ and Daily TAQ713

in the overlapping period between October 2003 and July 2014 is 99.8%. This suggests714

that, by relying on transaction prices only, EDGE is more robust than measuring effective715

spreads by matching trades with quotes, and it is less sensitive to the quality of the data.716
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In summary, low-frequency estimates can be substantially improved using intraday717

prices. This is particularly relevant for cases where high-frequency prices are available,718

but quotes are not, or they cannot be reliably matched with trades. Examples include,719

but are not limited to, over-the-counter markets, dark pools, and crypto exchanges.720

5.3 Estimates for Other Markets721

Our estimator represents a general way to estimate effective spreads, and it is designed722

to be applied to a variety of markets. To illustrate its applicability outside the U.S. stock723

market, we analyze estimates for cryptocurrency pairs listed in Binance.724

Binance is a leading crypto exchange listing hundreds of cryptocurrencies that can725

be exchanged for one another via trading pairs. Each trading pair (e.g., ETH/BTC)726

reports the price of the base currency (e.g., ETH) in units of the quote currency (e.g.,727

BTC). Like other crypto exchanges, Binance provides historical and real-time daily and728

intraday prices for free, while trade and quote data are subject to subscription fees, and729

their historical coverage is more limited. As trade and quote data are unavailable to us,730

we cannot compute bid-ask spreads obtained by matching trades with quotes.731

To estimate effective spreads from freely available data, we download historical open,732

high, low, and close prices for all cryptocurrency pairs at the minute, hourly, and daily733

frequency. We then compute monthly estimates with EDGE, AR, and CS for each pair734

and each frequency and drop the estimate for all estimators if missing for any of them.735

Our sample consists of 2,163 crypto pairs and 53,865 pair-month spread estimates for736

each frequency and estimator in the sample period from July 2017 to December 2021.737

We expect AR and CS to overstate the spread when using daily prices due to the738

upward bias induced by resetting negative estimates to zero. When using intraday prices,739

we expect them to understate the spread because the number of trades per period reduces740

at higher frequencies, and their downward bias shrinks the estimate to zero. Instead, we741
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expect EDGE to mitigate these two concerns because its lower variance reduces the742

upward bias, and the estimator is unaffected by the downward bias due to infrequent743

trading.744

Figure 8 reports the time evolution of the average spread across all trading pairs for745

each estimator. As expected, AR and CS produce different estimates depending on the746

sampling frequency. Estimates derived from daily prices are significantly higher than747

those derived from hourly prices, which, in turn, are higher than those derived from748

minute prices. Depending on the frequency used, the average spread in the whole sample749

period ranges anywhere between 0.18% (0.02%) and 1.85% (1.45%) according to AR750

(CS). This tenfold difference makes it impossible to estimate the spread reliably because751

it is unclear which sampling frequency should be preferred in principle. Instead, EDGE752

produces estimates less sensitive to the sampling frequency, and estimates from daily753

prices closely overlap with those from hourly and minute prices. The average spread754

in the whole sample period remains in the narrow range between 0.68% and 0.70%,755

depending on whether minute, hourly, or daily prices are used. In 2021, we find that the756

average spread for crypto pairs is between 0.35%–0.45%.757

[Insert Figure 8 about here.]758

In summary, EDGE is less sensitive to the sampling frequency than other estimators759

and can potentially reduce a large source of non-standard errors (Menkveld et al., 2023)760

in the measurement of transaction costs.761

6 Conclusion762

Historically, the development of bid-ask spread estimators has evolved along two com-763

plementary paths that consider either high-frequency or low-frequency data. The former764

exploits trade and quote data to obtain an explicit proxy of the fundamental price and765
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measure the distance of transaction prices from it. The latter introduces assumptions766

about the fundamental price to derive an estimator from transaction prices only. While767

estimates derived from trades and quotes are typically more accurate, low-frequency es-768

timates are more readily available and are becoming increasingly popular. However, low-769

frequency estimators assume that prices are observed continuously. Here, we document770

that these approaches lead to understating effective spreads, especially for infrequently771

traded assets that should presumably be associated with high transaction costs. We then772

develop a novel methodology relaxing the assumption that prices are observed continu-773

ously and derive generalized estimators that correct this downward bias analytically. We774

show that different estimators are preferable depending on whether the spread is large775

or small compared to volatility, and we combine them efficiently to produce an unbiased776

estimator with minimum variance. Through theoretical analyses, numerical simulations,777

and empirical evaluations, we find that our efficient estimator dominates each generalized778

estimator taken individually and other estimators from transaction prices.779

Our efficient estimator has broad applicability for several reasons. First, it is de-780

rived under more general assumptions than other approaches and extends the domain781

of applicability to various assets and time periods. Second, the estimator is unaffected782

by the downward bias due to infrequent trading and makes it possible to estimate effec-783

tive spreads for assets traded infrequently, for historical periods, or using high-frequency784

prices when quotes are unreliable or unavailable. Third, the estimator minimizes the785

estimation variance and thus also minimizes the upward bias that arises from resetting786

negative estimates to zero in small samples (Jahan-Parvar and Zikes, 2023).787

Our results show that other estimators significantly understate effective spreads in788

the 20th century, while end-of-day quoted spreads overstate effective spreads by up to789

100%. Thus, this work makes available the most realistic effective spread estimates for790

the U.S. stock market from 1926 to the advent of high-frequency data. We further show791
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that our estimator can substantially improve estimates from daily prices using intraday792

prices, while other estimators are dominated by their downward bias because trading793

becomes sparse in high frequency. To demonstrate the generalizability of these results794

outside the U.S. stock market, we estimate bid-ask spreads for cryptocurrencies. Our795

efficient estimator produces consistent estimates regardless of whether daily or intraday796

prices are used, while other estimators produce a tenfold difference between daily and797

intraday estimates. We conclude that our estimator may reduce a significant source of798

non-standard errors in applied research (Menkveld et al., 2023).799

Finally, we provide guidance for future research aimed at estimating transaction costs.800

First, we have shown that the assumption that prices are observed continuously has far-801

reaching implications and causes biases that generally vary in the cross-section and time802

series, and they also depend on the sampling frequency of open, high, low, and close803

prices. Future work should explicitly account for discretely observed prices to avoid this804

source of bias. Second, our estimator can be applied at any frequency, and, in this sense,805

it reconciles the high-frequency and low-frequency literature. For this reason, we argue806

that a better classification is distinguishing between methods that require trade and807

quote data and those that require transaction prices only. Third, we have constructed808

an efficient estimator in the class of covariance-based estimators from open, high, low,809

and close prices. To design more efficient estimators, future work could either consider810

approaches that are not based on the serial covariance of returns or exploit information811

other than prices, such as, for instance, the trading volume or a suitable Bayesian prior.812
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Estimators

OHL S2
o = πo E[(ηt − ot)(ot − ηt−1)] S2

c = πc E[(ηt − ct−1)(ct−1 − ηt−1)] CHL

OHLC S2
o = πo E[(ηt − ot)(ot − ct−1)] S2

c = πc E[(ot − ct−1)(ct−1 − ηt−1)] CHLO

Coefficients

πo πo = −8 /
(
P[ot ̸= ht, τt = 1] + P[ot ̸= lt, τt = 1]

)
πc πc = −8 /

(
P[ct−1 ̸= ht−1, τt = 1] + P[ct−1 ̸= lt−1, τt = 1]

)
Prices

o,h,l,c Open, High, Low, Close log-prices.
η Mid-prices computed as η = (l + h)/2.

Table 1: Discrete Generalized Estimators
This table reports bid-ask spread estimators obtained from several combinations of open, high,
low, and close prices as described in Section 2. The OHL and OHLC estimators measure the
spread at the open. The CHL and CHLO estimators measure the spread at the close. The
indicator variable τt is defined in Equation (7) and the de-meaned returns rt are defined in
Equation (9).
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EDGE OHLC CHLO OHL CHL AR CS ROLL

Panel A: Frequent Trading

S = 0.50% Mean 0.44 0.46 0.46 0.79 0.79 0.70 0.60 1.44
(sd) (0.33) (0.40) (0.39) (0.79) (0.79) (0.77) (0.49) (1.43)

S = 1.00% Mean 0.90 0.88 0.88 1.03 1.03 0.95 1.03 1.59
(sd) (0.42) (0.55) (0.55) (0.86) (0.86) (0.85) (0.58) (1.49)

S = 3.00% Mean 2.88 2.87 2.88 2.92 2.93 2.92 2.93 2.95
(sd) (0.41) (0.69) (0.69) (0.73) (0.72) (0.70) (0.61) (1.83)

S = 5.00% Mean 4.87 4.86 4.87 4.92 4.93 4.97 4.90 4.90
(sd) (0.42) (0.81) (0.81) (0.62) (0.62) (0.58) (0.61) (2.14)

S = 8.00% Mean 7.84 7.78 7.79 7.88 7.89 7.99 7.86 7.93
(sd) (0.45) (1.11) (1.10) (0.64) (0.64) (0.54) (0.62) (2.63)

Panel B: Infrequent Trading

S = 0.50% Mean 0.71 0.77 0.79 0.89 0.91 0.65 0.02 1.44
(sd) (0.75) (0.87) (0.88) (0.96) (0.97) (0.73) (0.07) (1.42)

S = 1.00% Mean 0.95 0.99 0.99 1.11 1.10 0.81 0.04 1.56
(sd) (0.83) (0.97) (0.96) (1.03) (1.04) (0.80) (0.10) (1.47)

S = 3.00% Mean 2.89 2.76 2.76 2.86 2.86 2.26 0.35 2.89
(sd) (0.83) (1.23) (1.23) (1.20) (1.19) (0.92) (0.36) (1.82)

S = 5.00% Mean 5.02 4.89 4.92 5.01 5.04 4.04 1.17 4.83
(sd) (0.81) (1.32) (1.33) (1.13) (1.13) (0.85) (0.62) (2.12)

S = 8.00% Mean 8.19 8.10 8.06 8.23 8.20 6.59 2.66 7.71
(sd) (0.96) (1.59) (1.62) (1.24) (1.26) (0.94) (0.96) (2.65)

Table 2: Monthly Estimates from Simulated Daily Prices
The table reports means and standard deviations (in %) of monthly spread estimates across
10,000 simulations, where each month consists of 21 trading days and each day consists of 390
minutes. For each minute of the day, the fundamental value P̃m is simulated as P̃m = P̃m−1e

σz

with P̃0 = 1, where σ is the standard deviation per minute and z is a random draw from a
standard Gaussian distribution. The daily standard deviation equals 3%, and the standard
deviation per minute equals 3% divided by

√
390. Trade prices are defined as P̃m multiplied by

one minus (plus) half the bid-ask spread S, and we assume a 50% chance that a bid (ask) is
observed. Panel A reports the results where the probability of observing a trade is 100%. In
Panel B, that probability equals 1%. Daily high and low prices equal the highest and lowest
prices observed during the day. Open and close prices equal the first and the last prices observed
in the day. If no trade is observed for a given day, then the previous day’s closing price is used
as the open, high, low, and close prices for that day. Negative spread estimates are set to zero.
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N Mean Med Sd CorP CorS MAPE RMSE FNPE
(1) (%) (%) (%) (%) (%) (%) (1) (%)

EDGE 1,637,621 2.11 1.00 3.37 78.86 66.68 16.21 1.23 25.63
OHLC 1,637,621 2.22 1.05 3.57 69.87 57.17 18.83 1.37 29.74
CHLO 1,637,621 2.01 0.85 3.56 74.26 58.77 17.08 1.27 30.97
OHL 1,637,621 2.35 1.21 3.65 69.95 54.64 20.47 1.49 29.97
CHL 1,637,621 2.16 1.03 3.67 73.83 55.44 18.93 1.41 31.30
AR 1,637,621 1.70 0.95 2.50 68.13 53.55 19.90 1.41 31.87
CS 1,637,621 0.66 0.28 1.10 45.55 33.77 35.90 2.61 29.18
ROLL 1,637,621 2.47 1.39 4.09 55.22 41.38 24.53 1.80 32.60

HJ 1,637,621 1.89 0.75 2.73 – – – – –

Table 3: Summary Statistics
The table reports summary statistics of stock-month spread estimates from daily prices in the
sample period 1993–2021 (CRSP-TAQ merged sample). Negative spread estimates are set to
zero, and we drop the stock-month estimate for all the estimators if it is missing for any of
them. The table reports the number of stock-months (N), the mean (Mean), median (Med),
and standard deviation (Sd) of the estimates, their Pearson’s (CorP ) and Spearman’s (CorS)
correlation with the HJ benchmark, the mean absolute percentage error (MAPE) and the root
mean squared error (RMSE) computed on the log-spreads (see Internet Appendix I.4), and the
Fraction of Non-Positive Estimates (FNPE). The highest correlations, the lowest errors, and
the lowest fraction of non-positive estimates are in bold.
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EDGE OHLC CHLO OHL CHL AR CS ROLL

Panel A: Analysis by Market Exchange

NYSE 64.94 53.22 61.84 52.15 58.43 46.79 45.87 29.59
AMEX 68.99 57.77 67.84 59.26 68.23 61.05 38.32 48.15
NASDAQ 78.16 68.62 73.24 68.87 72.99 67.03 41.09 54.81

Panel B: Analysis by Time Period

1993–1996 82.93 75.94 76.83 77.68 78.57 75.31 46.94 70.23
1997–2000 78.47 68.24 73.40 68.95 73.41 69.20 45.06 60.19
2001–2002 73.04 60.47 70.32 61.44 69.59 67.31 40.70 59.00
2003–2007 67.65 57.56 63.45 57.26 61.97 57.34 33.87 38.10
2008–2011 69.89 62.16 64.00 61.49 62.26 59.17 33.99 43.70
2012–2015 60.78 51.41 55.93 52.09 55.64 53.14 37.29 29.24
2016–2021 53.98 46.72 43.97 46.48 43.11 40.78 39.34 22.11

Panel C: Analysis by Market Capitalization

Size quintile 1 74.35 63.60 69.90 64.86 70.44 65.00 37.16 56.08
Size quintile 2 71.29 60.36 66.68 60.39 66.33 56.08 30.20 44.31
Size quintile 3 75.13 65.09 70.32 63.12 67.28 57.22 38.41 40.11
Size quintile 4 72.55 62.93 68.07 59.63 63.44 53.02 44.60 32.90
Size quintile 5 66.65 57.77 61.32 54.24 56.17 47.31 47.24 30.31

Panel D: Analysis by Spread Size

Spread quintile 1 17.84 15.62 16.56 15.43 15.21 14.18 12.64 9.60
Spread quintile 2 45.66 39.59 41.73 34.67 34.15 30.35 32.79 15.06
Spread quintile 3 61.98 52.28 57.80 48.88 52.46 44.72 40.82 24.64
Spread quintile 4 67.76 55.55 64.44 55.32 63.21 55.22 37.74 38.98
Spread quintile 5 71.38 60.78 66.08 62.57 67.24 61.83 33.15 55.06

Panel E: Analysis by Trading Frequency

Numtrd quintile 1 74.77 65.88 69.12 67.68 70.37 67.81 40.02 65.10
Numtrd quintile 2 79.15 69.32 74.45 69.55 74.17 69.58 51.59 52.00
Numtrd quintile 3 75.41 65.77 70.94 63.92 67.92 60.98 50.42 40.53
Numtrd quintile 4 67.17 58.53 62.78 56.00 58.71 52.54 48.98 32.41
Numtrd quintile 5 55.48 48.05 50.02 45.23 45.78 39.36 43.91 22.29

Table 4: Pearson’s Correlation with the HJ Benchmark
The table reports Pearson’s correlations (in %) with the HJ benchmark for stock-month spread
estimates from daily prices in the sample period 1993–2021 (CRSP-TAQ merged sample). The
highest correlation per group is in bold. Negative spread estimates are set to zero, and we drop
the stock-month estimate for all the estimators if it is missing for any of them. The size quintiles
are sorted by increasing market capitalization at the last observed period for each individual
stock. The spread quintiles are sorted by increasing average HJ spreads during the whole sample
period. The trade quintiles are sorted by increasing average number of daily trades during the
whole sample period.
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Figure 1: Probability that Open/Close Prices are High/Low Prices
The probability is computed for each stock-month as the average across: i) the fraction of days
such that the open matches the high, ii) the fraction of days such that the open matches the low,
iii) the fraction of days such that the close matches the high, iv) the fraction of days such that
the close matches the low. Stocks are sorted into small-caps, mid-caps, and large-caps based on
their market capitalization at the end of each month and using the 50th and 80th percentiles as
breakpoints. The figure reports the average probability across stocks for each month and size
group from 1926 to 2021. Open prices are missing from July 1962 through June 1992.
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Figure 2: Bias of Simulated Spread Estimates
The figure reports spreads estimated from 10,000 months of simulated data where each month
consists of 21 trading days and each day consists of 390 minutes. For each minute of the day,
the fundamental value P̃m is simulated as P̃m = P̃m−1e

σz with P̃0 = 1, where σ is the standard
deviation per minute and z is a random draw from a standard Gaussian distribution. The daily
standard deviation equals 3%, and the standard deviation per minute equals 3% divided by√
390. Trade prices are defined as P̃m multiplied by one minus (plus) half the bid-ask spread,

where the spread equals 1.00%, and we assume a 50% chance that a bid (ask) is observed. The
probability of observing a trade ranges from 1/390 to 1, and the average number of trades per
day is reported on the x-axis. Daily high and low prices equal the highest and lowest prices
observed during the day. Open and close prices equal the first and the last prices observed in
the day. If no trade is observed for a given day, then the previous day’s closing price is used as
the open, high, low, and close prices for that day. Negative spread estimates are set to zero.
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Figure 3: Variance of Simulated Spread Estimates
The figure reports the standard deviation of monthly spread estimates across 10,000 simulations,
where each month consists of 21 trading days and each day consists of 390 minutes. For each
minute of the day, the fundamental value P̃m is simulated as P̃m = P̃m−1e

σz with P̃0 = 1, where
σ is the standard deviation per minute and z is a random draw from a standard Gaussian
distribution. The daily standard deviation equals 3%, and the standard deviation per minute
equals 3% divided by

√
390. Trade prices are defined as P̃m multiplied by one minus (plus) half

the bid-ask spread, where the spread is reported on the x-axis, and we assume a 50% chance that
a bid (ask) is observed. Daily high and low prices equal the highest and lowest prices observed
during the day. Open and close prices equal the first and the last prices observed in the day.
Negative spread estimates are set to zero. The OHL, CHL, OHLC, and CHLO estimators are
defined in Table 1, and GMM is their GMM-combination in Equation (22) where the weighting
matrix is the identity matrix.
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Figure 4: Cross-Sectional Correlation with the HJ Benchmark
The figure shows cross-sectional Pearson’s correlations between stock-month spread estimates
from daily prices and the HJ benchmark for each month in the sample period 1993–2021 (CRSP-
TAQ merged sample). Negative spread estimates are set to zero, and we drop the stock-month
estimate for all the estimators if it is missing for any of them.
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Figure 5: Time-Series Correlation with the HJ Benchmark
The figure shows time-series Pearson’s correlations between stock-month spread estimates from
daily prices and the HJ benchmark for size deciles in the sample period 1993–2021 (CRSP-TAQ
merged sample). Size deciles are sorted by increasing market capitalization at the last observed
period for each individual stock. Negative spread estimates are set to zero, and we drop the
stock-month estimate for all the estimators if it is missing for any of them.
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Figure 6: Low-Frequency Estimates for U.S. Stocks
The figure reports the average spread across stocks for each month and size group from 1926
to 2021. Stocks are sorted into small-caps, mid-caps, and large-caps based on their market
capitalization at the end of each month and using the 50th and 80th percentiles as breakpoints.
Spreads are estimated for each stock-month using daily prices. Negative spread estimates are
set to zero, and we drop the stock-month estimate for all the estimators if it is missing for any of
them. EDGE is replaced with CHL when open prices are missing in CRSP. End-of-day quoted
spreads (QS) are missing from July 1962 to October 1982. The HJ benchmark obtained from
TAQ data is available since May 1993.
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Figure 7: High-Frequency Estimates for U.S. Stocks
The figure reports the average spread across large-cap stocks for each month from October 2003
to December 2021. Spreads are estimated for each stock-month using daily (EDGE) or minute
(EDGE/HF) prices. Negative spread estimates are set to zero, and we drop the stock-month
estimate for all the estimators if it is missing for any of them. HJ is the benchmark spread
obtained from TAQ data.
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Figure 8: Low- and High-Frequency Estimates for Cryptocurrencies
The figure reports the average spread across trading pairs listed in Binance for each month from
July 2017 to December 2021. Spreads are estimated for each pair-month using daily, hourly, or
minute prices. Negative spread estimates are set to zero, and we drop the pair-month estimate
for all the estimators if it is missing for any of them.
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A Appendix913

A.1 Proof of Equation 10914

The de-meaned returns defined in Equation (9) have mean zero conditional on τt, for any915

return rt computed in the time interval between the end of period t − 1 and the end of916

period t. Indeed, rt is identically zero conditional on τt = 0 because ht = lt = ct−1 and917

thus E[rt | τt = 0] = 0. Moreover, E[rt | τt = 1] = E[rt | τt = 1]− E[rt]/E[τt] = 0 because918

E[rt | τt = 0] = 0. In summary, it holds that E[rt | τt] = 0 and using the law of total919

covariance we have:920

Cov[rt, rs] = E[Cov[rt, rs | τt]] + Cov[E[rt | τt],E[rs | τt]]

= E[Cov[rt, rs | τt]]

= Cov[rt, rs | τt = 1]P[τt = 1] + Cov[rt, rs | τt = 0]P[τt = 0]

= Cov[rt, rs | τt = 1]P[τt = 1] .

(A.1)

The last equality follows from the fact that rt = rt = 0 conditional on τt = 0, while921

rt = rt + const. conditional on τt = 1 and the constant is irrelevant for the calculation of922

the covariance.923

A.2 Proof of Equation 14924

We need to compute:925

E[ZηtZot | τt = 1] =
E[ZhtZot | τt = 1] + E[ZltZot | τt = 1]

2
. (A.2)

We start by considering high prices, and we condition on whether or not the opening926

price ot is equal to the highest price ht:927

E[ZhtZot | τt = 1] = E[ZhtZot | ot = ht, τt = 1]P[ot = ht | τt = 1]

+ E[ZhtZot | ot ̸= ht, τt = 1]P[ot ̸= ht | τt = 1] .
(A.3)

If ot = ht, then the opening price is selected as the highest price in the period, and the928

54



bid-ask bounces Zht = Zot = Sot/2Dot coincide. Thus, we have:929

E[ZhtZot | ot = ht, τt = 1] = E[S2
ot ]/4 . (A.4)

If ot ̸= ht, then Zht and Zot are uncorrelated by Assumption 3 and:930

E[ZhtZot | ot ̸= ht, τt = 1] = E[Zht | ot ̸= ht, τt = 1]E[Zot | ot ̸= ht, τt = 1] = 0 , (A.5)

because E[Zot | ot ̸= ht, τt = 1] = E[Zot ] = 0 if we consider that the bid-ask bounce at the931

open is independent from whether the opening price is the highest price in the period.932

Substituting Equations (A.4)–(A.5) into Equation (A.3) gives:933

E[ZhtZot | τt = 1] = E[S2
ot ]P[ot = ht | τt = 1]/4 . (A.6)

The same equation holds for low prices by replacing Zht with Zlt and ht with lt. Substi-934

tuting Equation (A.6) for high and low prices into Equation (A.2) yields Equation (14).935

A.3 Proof of Equation 15936

Substituting Equations (13)–(14) in Equation (12) yields:937

E[(ηt − ot)(ot − ct−1)] =
E[S2

ot ]

4

(
P[ot = ht | τt = 1] + P[ot = lt | τt = 1]

2
− 1

)
P[τt = 1]

=
E[S2

ot ]

4

(
− P[ot ̸= ht | τt = 1] + P[ot ̸= lt | τt = 1]

2

)
P[τt = 1]

=
E[S2

ot ]

4

(
− P[ot ̸= ht, τt = 1] + P[ot ̸= lt, τt = 1]

2

)
.

(A.7)

Solving Equation (A.7) for E[S2
ot ] gives Equation (15).938

55



Internet Appendix939

Efficient Estimation of Bid-Ask Spreads from Open,940

High, Low, and Close Prices941

David Ardia, Emanuele Guidotti, Tim A. Kroencke942

1



I.
1

L
it
e
ra

tu
re

R
e
v
ie
w

9
4
3

R
ef
er
en
ce

J
o
u
rn
a
l

A
re
a

E
st
im

a
to
r

M
cL

ea
n
an

d
P
on

ti
ff
(2
01
6)

J
F

A
P
,
st
o
ck
s

C
S

L
o
on

an
d
Z
h
on

g
(2
01
6)

J
F
E

M
M
,
O
T
C

d
er
iv
a
ti
ve
s

R
o
ll

B
on

ga
er
ts
,
d
e
J
on

g,
an

d
D
ri
es
se
n
(2
01
7)

R
F
S

A
P
,
co
rp
o
ra
te

b
o
n
d
s

R
o
ll

S
ch
w
er
t
(2
01
7)

J
F

A
P
,
m
u
n
i
b
o
n
d
s

R
o
ll

G
ol
d
st
ei
n
,
J
ia
n
g,

an
d
N
g
(2
01
7)

J
F
E

A
P
,
b
o
n
d
fu
n
d
s

R
o
ll

H
ou

,
X
u
e,

an
d
Z
h
an

g
(2
01
8)

R
F
S

A
P
,
st
o
ck
s

C
S

C
h
en
,
E
at
on

,
an

d
P
ay
e
(2
01
8)

J
F
E

A
P
,
ti
m
e-
se
ri
es

p
re
d
ic
ta
b
il
it
y

R
o
ll
,
C
S

L
i,
S
u
b
ra
h
m
an

y
am

,
an

d
Y
an

g
(2
01
8)

J
F
E

A
P
,
in
ve
st
o
r
b
eh
av

io
r

C
S

B
ir
ru

(2
01
8)

J
F
E

A
P
,
st
o
ck
s

C
S

G
ro
ss
e-
R
u
es
ch
ka
m
p
,
S
te
ff
en
,
an

d
S
tr
ei
tz

(2
01
9)

J
F
E

C
F
,
ca
p
it
a
l
st
ru
ct
u
re

C
S

M
ic
h
ae
li
d
es
,
M
il
id
on

is
,
an

d
N
is
h
io
ti
s
(2
01
9)

J
F
E

M
M
,
cu
rr
en
cy

m
a
rk
et
s

C
S

C
ai

et
al
.
(2
01
9)

J
F
E

A
P
,
co
rp
o
ra
te

b
o
n
d
s

R
o
ll

H
u
a
et

al
.
(2
01
9)

R
F
S

A
P
,
st
o
ck
s

R
o
ll
,
C
S

E
as
le
y
et

al
.
(2
02
0)

J
F
E

M
M
,
in
fo
rm

a
ti
o
n

C
S

J
ac
ob

s
an

d
M
ü
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I.2 Signed Estimates944

We define the signed spread estimate as follows:945

Ŝ = sign(Ŝ2)×
√

| Ŝ2 | . (I.1)

In Table I.2, we report the number of negative spread estimates and their correlation946

with minus the HJ benchmark.947

EDGE OHLC CHLO OHL CHL AR CS ROLL

N 419,617 486,690 507,074 490,702 512,542 521,928 465,952 533,543
CorP 54.23% 57.43% 59.41% 53.84% 55.56% 36.01% 21.47% 38.57%
CorS 45.95% 48.29% 49.73% 49.24% 50.61% 41.02% 21.78% 40.41%

Table I.2: Summary Statistics of Negative Estimates
The table reports summary statistics of negative stock-month spread estimates from daily prices
in the sample period 1993–2021 (CRSP-TAQ merged sample). We drop the stock-month es-
timate for all the estimators if it is missing for any of them. The table reports the number
of negative estimates (N), and their Pearson’s (CorP ) and Spearman’s (CorS) correlation with
minus the HJ benchmark.

I.3 Individual Stocks948

This section reports two illustrative cases for individual stocks. Specifically, Table I.3949

reports signed bid-ask spread estimates for the monthly samples of open, high, low, and950

close daily prices displayed in Figure I.1. Panel A is the case of a stock traded infrequently951

in May 2001, where the high and low prices often match the open and close prices. In this952

situation, EDGE, OHLC, CHLO, OHL, and CHL are close to the benchmark spread of953

2.53%. AR gives a downward biased estimate of 1.14%, and the CS estimate is essentially954

zero. ROLL estimates a negative spread, likely due to its large estimation variance.955

Panel B gives an example in December 2021 where the stock trades frequently, the high956

and low prices differ from the open and close prices, but the spread is small (0.56%). In957

this case, some building blocks of EDGE give positive estimates (OHLC, OHL, CHL) and958

others give a negative estimate (CHLO). By weighting them optimally, EDGE estimates959

a spread of 0.58%, while other methods produce upward biased estimates of 1.87% (AR),960
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2.35% (CS), and 2.87% (ROLL).961

Panel HJ EDGE OHLC CHLO OHL CHL AR CS ROLL

A 2.53 2.50 2.52 2.47 2.53 2.48 1.14 -0.00 -0.58
B 0.56 0.58 1.13 -0.99 2.46 1.93 1.87 2.35 2.87

Table I.3: Spread Estimates for Individual Stocks
The table reports monthly spread estimates from daily prices for the examples in Figure I.1.
The estimates are signed as defined by Equation (I.1).

A. Stock 75272 / Year 2001 B. Stock 21543 / Year 2021
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Figure I.1: Daily Open, High, Low, and Close Prices for Individual Stocks
Examples of daily open, high, low, and close prices. The highest and lowest extremes of each
bar are the high and low prices. The left and right segments are the open and close prices,
respectively. Bars are green if the close is higher than the open, and red otherwise. Stocks
are identified with their CRSP PERMNO. Panel A reports stock 75272 in May 2001. Panel B
reports stock 21543 in December 2021.

I.4 Additional Evaluation Metrics962

The empirical distribution of benchmark spreads is highly skewed, as displayed in Fig-963

ure I.2. For this reason, we evaluate the MAPE and RMSE on the log-spreads, which964

are more symmetrically distributed. As the logarithm is defined for positive values, we965

ignore non-positive estimates in these calculations.966

MAPE =
1

N

N∑
i=1

∣∣∣∣∣ log(Si)− log(Ŝi)

log(Si)

∣∣∣∣∣, RMSE =

√√√√ 1

N

N∑
i=1

(
log(Si)− log(Ŝi)

)2
. (I.2)
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Figure I.2: Distribution of the HJ Benchmark
The histograms show the empirical distribution of the HJ benchmark. The left panel reports
the distribution of the spreads. The right panel reports the distribution of the natural logarithm
of the spreads.

We report several evaluation metrics for monthly and yearly spread estimates from daily967

prices. The following tables report metrics for monthly estimates: Table I.4 reports968

Spearman’s correlations; Tables I.5 and I.6 report mean absolute percentage errors and969

root mean squared errors; Table I.7 reports the fractions of non-positive estimates. Ta-970

ble I.8 reports Pearson’s correlations for first-differences of monthly estimates. Table I.9971

reports Pearson’s correlations for yearly estimates.972
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EDGE OHLC CHLO OHL CHL AR CS ROLL

Panel A: Analysis by Market Exchange

NYSE 22.98 17.85 21.99 17.47 19.20 17.37 2.69 10.62
AMEX 49.52 37.02 47.01 38.11 46.21 43.39 17.72 37.99
NASDAQ 72.29 60.68 64.21 58.34 60.89 57.64 30.80 45.92

Panel B: Analysis by Time Period

1993–1996 83.91 74.62 75.72 75.67 76.90 74.39 53.19 66.76
1997–2000 72.18 59.47 64.86 57.64 61.96 58.87 40.30 48.53
2001–2002 63.53 47.01 60.06 45.36 55.81 53.32 28.03 42.23
2003–2007 56.71 49.83 42.68 47.34 41.38 41.20 23.52 29.37
2008–2011 58.82 49.68 43.98 51.79 46.13 47.51 31.53 33.63
2012–2015 54.14 46.60 40.58 47.87 43.71 44.96 40.68 31.10
2016–2021 49.35 43.41 35.91 42.95 36.48 37.96 42.80 25.06

Panel C: Analysis by Market Capitalization

Size quintile 1 71.50 56.30 65.57 57.39 65.39 60.85 28.17 53.76
Size quintile 2 64.83 51.84 57.97 50.52 55.71 50.15 19.71 42.05
Size quintile 3 60.82 52.18 52.64 46.92 46.03 42.84 23.87 29.00
Size quintile 4 43.85 38.26 38.56 33.48 32.10 30.76 21.68 18.82
Size quintile 5 26.88 24.15 23.85 22.18 20.83 20.17 14.53 14.00

Panel D: Analysis by Spread Size

Spread quintile 1 13.68 11.53 12.37 12.46 12.00 11.40 7.22 8.83
Spread quintile 2 31.60 27.75 26.98 23.00 20.76 19.56 13.95 10.09
Spread quintile 3 50.83 43.85 44.23 37.35 36.23 33.68 23.49 19.15
Spread quintile 4 61.52 49.05 55.05 47.35 52.10 47.51 25.32 35.88
Spread quintile 5 69.49 53.41 62.53 55.90 64.05 58.29 21.81 56.12

Panel E: Analysis by Trading Frequency

Numtrd quintile 1 72.68 58.35 64.90 60.83 66.75 64.32 33.88 63.10
Numtrd quintile 2 72.25 61.54 63.17 59.19 60.14 59.00 43.17 45.44
Numtrd quintile 3 61.22 54.60 51.83 48.60 44.82 44.27 36.75 29.87
Numtrd quintile 4 45.85 42.07 37.16 37.95 33.01 32.89 32.74 22.75
Numtrd quintile 5 27.49 25.90 22.83 23.64 20.30 19.80 19.78 15.75

Table I.4: Spearman’s Correlation with the HJ Benchmark
The table reports Spearman’s correlations (in %) with the HJ benchmark for stock-month spread
estimates from daily prices in the sample period 1993–2021 (CRSP-TAQ merged sample). The
highest correlation per group is in bold. Negative spread estimates are set to zero, and we drop
the stock-month estimate for all the estimators if it is missing for any of them. The size quintiles
are sorted by increasing market capitalization at the last observed period for each stock. The
spread quintiles are sorted by increasing average HJ spreads during the whole sample period.
The trade quintiles are sorted by increasing average number of daily trades during the whole
sample period.
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EDGE OHLC CHLO OHL CHL AR CS ROLL

Panel A: Analysis by Market Exchange

NYSE 21.12 23.96 22.06 26.77 25.55 25.19 20.72 32.92
AMEX 13.93 15.80 13.64 16.59 14.37 17.00 50.66 17.56
NASDAQ 14.77 17.41 15.62 18.64 16.98 18.32 39.91 21.94

Panel B: Analysis by Time Period

1993–1996 9.29 11.14 10.55 11.39 10.71 13.83 58.27 14.15
1997–2000 11.32 13.76 12.77 14.64 13.77 15.05 48.19 18.24
2001–2002 14.49 16.99 15.46 18.27 17.05 17.79 43.41 22.29
2003–2007 19.09 22.13 19.15 24.10 21.50 21.81 25.22 27.15
2008–2011 23.23 25.93 24.36 28.21 26.90 27.11 28.91 33.10
2012–2015 20.38 23.35 21.29 25.42 23.40 23.53 22.32 30.04
2016–2021 21.65 24.88 22.83 27.31 25.64 25.52 20.72 33.26

Panel C: Analysis by Market Capitalization

Size quintile 1 13.37 15.82 14.38 16.42 14.92 16.96 61.84 18.54
Size quintile 2 12.93 15.31 13.65 16.09 14.44 16.88 43.95 18.27
Size quintile 3 14.10 16.63 14.74 18.44 16.83 17.48 28.17 22.26
Size quintile 4 18.76 21.63 19.51 24.39 22.77 22.60 21.19 30.01
Size quintile 5 24.43 27.35 25.41 29.84 28.48 28.12 20.21 36.14

Panel D: Analysis by Spread Size

Spread quintile 1 26.09 29.24 27.09 31.93 30.47 30.13 19.15 38.17
Spread quintile 2 19.56 22.42 20.23 25.44 23.84 23.44 18.79 31.33
Spread quintile 3 15.09 17.86 15.38 19.93 17.81 17.86 21.93 24.05
Spread quintile 4 11.96 14.45 12.54 15.16 13.23 14.54 34.55 17.20
Spread quintile 5 12.28 14.26 13.65 14.33 13.58 17.24 78.46 16.06

Panel E: Analysis by Trading Frequency

Numtrd quintile 1 11.48 12.88 12.66 12.78 12.46 16.98 82.35 14.37
Numtrd quintile 2 11.25 13.72 12.10 14.63 12.98 13.43 34.14 17.13
Numtrd quintile 3 15.21 18.13 15.59 20.48 18.34 18.30 22.29 24.70
Numtrd quintile 4 20.50 23.66 21.17 26.53 24.61 24.31 19.45 32.25
Numtrd quintile 5 26.51 29.65 27.63 32.17 30.73 30.38 20.57 38.57

Table I.5: Mean Absolute Percentage Error with the HJ Benchmark
The table reports Mean Absolute Percentage Errors (in %) with the HJ benchmark as defined
in Equation (I.2), for stock-month spread estimates from daily prices in the sample period
1993–2021 (CRSP-TAQ merged sample). The lowest error per group is in bold. We drop the
stock-month estimate for all the estimators if it is missing for any of them. The size quintiles
are sorted by increasing market capitalization at the last observed period for each stock. The
spread quintiles are sorted by increasing average HJ spreads during the whole sample period.
The trade quintiles are sorted by increasing average number of daily trades during the whole
sample period.
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EDGE OHLC CHLO OHL CHL AR CS ROLL

Panel A: Analysis by Market Exchange

NYSE 1.76 1.95 1.82 2.11 2.02 2.00 1.60 2.52
AMEX 0.79 0.88 0.75 0.93 0.79 0.88 3.17 0.98
NASDAQ 1.03 1.16 1.05 1.26 1.17 1.18 2.83 1.49

Panel B: Analysis by Time Period

1993–1996 0.52 0.55 0.52 0.56 0.53 0.64 3.91 0.70
1997–2000 0.63 0.73 0.68 0.79 0.75 0.79 3.19 1.01
2001–2002 0.87 1.00 0.91 1.10 1.02 1.04 3.04 1.35
2003–2007 1.39 1.57 1.43 1.70 1.59 1.58 1.74 1.99
2008–2011 1.69 1.85 1.78 1.98 1.94 1.91 1.88 2.37
2012–2015 1.61 1.80 1.67 1.92 1.81 1.79 1.55 2.28
2016–2021 1.70 1.90 1.80 2.05 1.97 1.95 1.54 2.48

Panel C: Analysis by Market Capitalization

Size quintile 1 0.72 0.81 0.72 0.85 0.76 0.82 4.03 0.96
Size quintile 2 0.78 0.89 0.80 0.95 0.87 0.93 2.80 1.10
Size quintile 3 0.98 1.12 1.01 1.24 1.16 1.16 1.92 1.51
Size quintile 4 1.45 1.63 1.49 1.79 1.70 1.68 1.56 2.17
Size quintile 5 2.04 2.23 2.10 2.39 2.30 2.28 1.64 2.83

Panel D: Analysis by Spread Size

Spread quintile 1 2.11 2.32 2.18 2.48 2.38 2.36 1.59 2.91
Spread quintile 2 1.51 1.68 1.55 1.85 1.76 1.74 1.39 2.23
Spread quintile 3 1.04 1.19 1.06 1.33 1.23 1.22 1.43 1.60
Spread quintile 4 0.71 0.82 0.72 0.88 0.78 0.82 2.06 1.01
Spread quintile 5 0.58 0.62 0.58 0.62 0.57 0.71 4.63 0.68

Panel E: Analysis by Trading Frequency

Numtrd quintile 1 0.58 0.58 0.57 0.57 0.55 0.73 4.72 0.62
Numtrd quintile 2 0.62 0.73 0.65 0.79 0.72 0.73 2.14 0.94
Numtrd quintile 3 1.01 1.16 1.02 1.31 1.21 1.20 1.56 1.59
Numtrd quintile 4 1.51 1.69 1.55 1.86 1.77 1.75 1.42 2.25
Numtrd quintile 5 2.14 2.34 2.22 2.50 2.41 2.39 1.66 2.94

Table I.6: Root Mean Squared Error with the HJ Benchmark
The table reports Root Mean Squared Errors with the HJ benchmark as defined in Equa-
tion (I.2), for stock-month spread estimates from daily prices in the sample period 1993–2021
(CRSP-TAQ merged sample). The lowest error per group is in bold. We drop the stock-month
estimate for all the estimators if it is missing for any of them. The size quintiles are sorted by
increasing market capitalization at the last observed period for each stock. The spread quintiles
are sorted by increasing average HJ spreads during the whole sample period. The trade quintiles
are sorted by increasing average number of daily trades during the whole sample period.
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EDGE OHLC CHLO OHL CHL AR CS ROLL

Panel A: Analysis by Market Exchange

NYSE 40.90 44.50 42.34 42.75 42.19 44.10 42.01 40.06
AMEX 25.84 30.89 32.43 30.69 31.83 31.29 40.30 32.75
NASDAQ 18.34 22.58 25.40 23.81 26.06 26.13 21.76 29.04

Panel B: Analysis by Time Period

1993–1996 15.50 19.02 18.76 21.34 21.99 22.26 26.12 26.31
1997–2000 22.47 27.31 25.51 29.82 29.51 29.99 34.76 31.85
2001–2002 24.55 31.40 27.03 32.85 30.49 30.92 35.42 32.26
2003–2007 27.07 30.58 35.40 29.86 33.47 33.67 28.59 35.13
2008–2011 26.38 32.84 32.91 30.42 31.30 31.81 26.79 33.10
2012–2015 31.47 33.89 39.30 32.89 36.36 37.41 25.16 35.89
2016–2021 34.70 37.15 40.84 35.54 37.98 39.18 27.33 35.02

Panel C: Analysis by Market Capitalization

Size quintile 1 15.64 21.09 21.48 22.21 22.74 22.21 24.72 25.95
Size quintile 2 17.42 22.34 24.38 23.00 24.72 24.33 25.52 27.61
Size quintile 3 23.13 26.99 29.70 27.48 29.97 30.37 26.56 32.96
Size quintile 4 33.18 36.35 37.55 35.94 37.31 38.75 31.95 37.07
Size quintile 5 38.77 41.93 41.76 41.23 41.77 43.71 37.16 39.42

Panel D: Analysis by Spread Size

Spread quintile 1 41.85 44.73 44.18 43.29 43.50 45.65 38.06 40.27
Spread quintile 2 34.63 37.99 39.02 37.57 38.92 40.46 33.63 38.69
Spread quintile 3 24.94 28.44 31.89 29.56 32.62 33.24 27.54 35.55
Spread quintile 4 15.97 20.17 23.32 21.88 24.74 24.29 23.92 29.14
Spread quintile 5 10.75 17.33 16.44 17.54 16.72 15.70 22.74 19.34

Panel E: Analysis by Trading Frequency

Numtrd quintile 1 13.74 21.14 17.64 20.67 17.98 17.42 29.40 19.92
Numtrd quintile 2 16.24 20.48 22.94 22.51 25.13 24.82 25.12 30.33
Numtrd quintile 3 24.40 28.08 32.00 28.29 31.76 32.07 25.37 34.58
Numtrd quintile 4 33.61 36.45 39.20 36.08 38.36 39.64 29.58 37.96
Numtrd quintile 5 40.15 42.55 43.10 42.30 43.28 45.42 36.43 40.23

Table I.7: Fraction of Non-Positive Estimates
The table reports fractions of non-positive stock-month spread estimates (in %) from daily
prices in the sample period 1993–2021 (CRSP-TAQ merged sample). The lowest fraction per
group is in bold. We drop the stock-month estimate for all the estimators if it is missing for any
of them. The size quintiles are sorted by increasing market capitalization at the last observed
period for each stock. The spread quintiles are sorted by increasing average HJ spreads during
the whole sample period. The trade quintiles are sorted by increasing average number of daily
trades during the whole sample period.
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EDGE OHLC CHLO OHL CHL AR CS ROLL

Panel A: Analysis by Market Exchange

NYSE 15.44 11.68 13.67 11.40 12.48 11.74 13.10 7.78
AMEX 21.99 16.33 19.13 17.75 20.05 20.41 19.40 9.49
NASDAQ 30.82 23.73 25.19 24.43 25.81 25.04 18.75 16.39

Panel B: Analysis by Time Period

1993–1996 32.83 25.15 25.94 26.68 27.59 27.78 19.49 22.22
1997–2000 32.29 24.63 26.64 25.05 27.06 27.28 21.16 20.41
2001–2002 31.51 23.49 28.62 23.98 27.88 30.43 24.34 22.16
2003–2007 23.70 18.42 18.38 18.77 18.65 17.04 13.26 2.99
2008–2011 25.30 21.08 19.11 21.49 19.24 19.80 13.12 11.77
2012–2015 13.48 11.73 9.31 12.61 10.35 10.43 10.54 2.04
2016–2021 13.79 11.85 8.95 13.08 10.16 9.38 11.51 2.95

Panel C: Analysis by Market Capitalization

Size quintile 1 31.34 23.96 26.04 24.86 26.72 27.54 21.17 18.77
Size quintile 2 27.51 21.34 22.01 22.18 22.80 21.10 16.19 13.33
Size quintile 3 27.16 20.97 21.99 21.28 21.84 19.53 15.35 11.20
Size quintile 4 22.96 17.77 19.76 17.15 18.99 16.24 14.30 7.98
Size quintile 5 16.42 13.44 13.86 12.76 13.05 11.04 9.64 8.39

Panel D: Analysis by Spread Size

Spread quintile 1 4.22 4.87 3.47 4.77 3.55 4.24 3.67 3.94
Spread quintile 2 12.58 10.76 10.96 10.36 10.01 10.11 9.76 6.32
Spread quintile 3 21.42 17.00 17.80 16.71 17.32 15.88 16.18 7.65
Spread quintile 4 28.97 22.01 24.09 22.33 23.97 22.98 19.40 12.13
Spread quintile 5 31.43 24.24 25.58 25.43 26.60 27.77 20.20 19.39

Panel E: Analysis by Trading Frequency

Numtrd quintile 1 29.94 23.17 24.67 24.33 25.64 27.07 16.56 22.59
Numtrd quintile 2 34.18 25.77 27.45 26.66 28.09 28.09 24.89 14.46
Numtrd quintile 3 27.56 21.46 22.43 21.30 21.76 20.36 20.74 8.91
Numtrd quintile 4 20.15 15.97 16.65 15.79 16.29 14.59 15.93 6.74
Numtrd quintile 5 12.39 10.96 10.77 10.22 10.07 8.93 9.93 4.83

Table I.8: Pearson’s Correlation of First-Differences with the HJ Benchmark
The table reports Pearson’s correlations (in %) with the HJ benchmark for first-differences of
stock-month spread estimates from daily prices in the sample period 1993–2021 (CRSP-TAQ
merged sample). The highest correlation per group is in bold. Negative spread estimates are
set to zero, and we drop the stock-month estimate for all the estimators if it is missing for any
of them. The size quintiles are sorted by increasing market capitalization at the last observed
period for each stock. The spread quintiles are sorted by increasing average HJ spreads during
the whole sample period. The trade quintiles are sorted by increasing average number of daily
trades during the whole sample period.
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EDGE OHLC CHLO OHL CHL AR CS ROLL

Panel A: Analysis by Market Exchange

NYSE 74.17 66.98 70.93 66.76 69.06 56.35 58.89 35.72
AMEX 76.85 67.56 75.57 69.50 76.40 64.59 45.33 42.23
NASDAQ 86.54 79.71 83.60 80.20 83.09 78.43 49.89 62.94

Panel B: Analysis by Time Period

1993–1996 88.27 83.89 85.02 85.30 86.09 83.02 52.46 80.14
1997–2000 87.52 79.94 84.25 81.09 84.06 81.77 54.39 74.52
2001–2002 85.73 73.21 84.72 75.27 84.14 82.02 52.91 74.98
2003–2007 76.21 67.34 71.30 68.64 70.32 64.25 47.23 34.06
2008–2011 80.29 76.57 74.68 76.05 73.03 68.32 48.62 43.58
2012–2015 70.78 63.56 63.91 64.94 64.32 63.62 51.92 32.02
2016–2021 63.73 58.34 54.63 58.54 53.62 50.81 52.09 27.82

Panel C: Analysis by Market Capitalization

Size quintile 1 82.80 73.76 79.97 75.38 80.19 74.87 42.42 62.40
Size quintile 2 80.64 72.48 77.33 73.38 77.50 64.95 36.99 49.91
Size quintile 3 82.49 76.15 79.01 74.79 76.45 64.40 46.87 43.24
Size quintile 4 82.55 75.85 81.54 72.88 76.99 65.84 54.12 31.89
Size quintile 5 78.31 71.00 76.70 68.34 71.59 61.95 58.96 39.53

Panel D: Analysis by Spread Size

Spread quintile 1 23.91 22.14 21.58 19.70 17.65 16.01 17.99 6.95
Spread quintile 2 52.04 50.50 46.69 43.11 37.40 32.46 39.33 13.30
Spread quintile 3 67.97 62.29 62.80 58.62 57.75 46.96 49.02 21.11
Spread quintile 4 77.37 66.28 76.75 66.68 76.04 66.42 45.87 42.26
Spread quintile 5 80.43 71.18 76.82 73.31 77.50 71.45 36.99 62.02

Panel E: Analysis by Trading Frequency

Numtrd quintile 1 83.59 76.27 79.77 78.11 80.38 78.24 47.76 77.30
Numtrd quintile 2 88.24 81.52 85.93 82.04 85.95 81.45 63.30 55.62
Numtrd quintile 3 83.86 77.56 81.10 75.93 78.43 69.37 61.20 40.14
Numtrd quintile 4 74.16 70.80 67.81 68.32 64.25 57.04 62.84 33.50
Numtrd quintile 5 68.26 62.99 62.02 60.06 56.85 48.64 55.44 26.63

Table I.9: Pearson’s Correlation of Yearly Estimates with the HJ Benchmark
The table reports Pearson’s correlations (in %) with the yearly HJ benchmark for stock-year
spread estimates from daily prices in the sample period 1993–2021 (CRSP-TAQ merged sample).
The yearly HJ benchmark is the root mean squared monthly HJ benchmark within the year.
The highest correlation per group is in bold. Negative spread estimates are set to zero, and
we drop the stock-year estimate for all the estimators if it is missing for any of them. The
size quintiles are sorted by increasing market capitalization at the last observed period for each
stock. The spread quintiles are sorted by increasing average HJ spreads during the whole sample
period. The trade quintiles are sorted by increasing average number of daily trades during the
whole sample period.
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