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Abstract

I propose a new systemic-risk score to identify and regulate systemically important finan-

cial institutions (SIFIs) by using an alternative weighting scheme based on volatility to

aggregate all systemic-risk facets. Following a portfolio management approach, I equalize

the risk contribution of each systemic-risk component to the cross-sectional volatility of

my smart systemic-risk scores. To discriminate between several systemic-risk scores, I

modify and apply the axiomatic framework of Chen, Iyengar, and Moallemi (2013) to

express supervisor preferences among systemic-risk scores. Such preferences are based on

the expected value of the cross-sectional dispersion of systemic-risk scores over the years.
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1 Introduction

The systemic-risk scoring methodology currently implemented worldwide by the Basel Com-

mittee on Banking Supervision (BCBS) has been updated or revised several times since the

publication of its rules text in 2011 (BCBS, 2011; BCBS, 2013; BCBS, 2014b; and BCBS,

2018). The main characteristics of this assessment framework is to aggregate information

about five broad categories of systemic importance – size, interconnectedness, substitutabil-

ity/financial institution infrastructure, complexity, and cross-jurisdictional activity – to calcu-

late a systemic-risk score for each financial institution under scrutiny. Financial institutions

are ranked based on this score, and those labeled as systemically important financial institu-

tions (SIFIs) go to a risk bucket where they must face an additional capital requirement due

to the systemic regulation imposed by Basel III.

For assessing systemic importance of SIFIs, the regulator cares about (1) the aggregation of

these multiple sources of risk into an individual systemic-risk score and (2) the cross-sectional

profile (distribution) of systemic-risk scores across banks. On the one hand, to compute the

current systemic-risk score, the BCBS uses an equally weighted average of the five categories

since the primary intention of the committee is to give all categories equal weights (BCBS,

2013) and implicitly treats them as if they were independent. On the other hand, the ranking

of these individual systemic-risk score matters since it is used to identify and regulate SIFIs.

This scoring methodology draws the attention of both academics and banking lobbies.1

Benoit, Hurlin, and Pérignon (2019) provide a complete overview of this systemic-risk scor-

ing methodology and identify several shortcomings in it, which in the end distort banks’

incentives to reduce risk taking. One of them is related to the weighted average used to com-

1For a complete overview of the comments received by the BCBS on its consultative document (BCBS,
2017), please go to https://www.bis.org/bcbs/publ/comments/d402/overview.htm.
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pute the systemic-risk score. The use of an equal weighting scheme provides an unintended

consequence: this scoring method overweights the most volatile categories and conversely

underweights the less volatile ones, as shown theoretically and empirically in Benoit et al.

(2017). This issue is also raised in the reply to the BCBS of the British Bankers’ Association

in June 2017, and they “support a revision of the overall scoring methodology” to cancel this

distortion. In practice, there are two standard and straightforward ways to correct for this

statistical bias. One way is to standardize each category, whereas the other way is to trim

outliers by capping some of the categories, as the BCBS does with the substitutability cate-

gory. Currently, the substitutability category is capped at 500 basis points (bps), but this cap

could be removed in the near future (BCBS, 2018), which would exacerbate the mechanical

domination of the most volatile categories in the systemic-risk score.

In this paper, I propose an alternative solution to data transformation to fix this pitfall

by modifying the equal weighting scheme to compute the systemic-risk score. I introduce

a new systemic-risk score, which I call the smart systemic-risk score, where the weighting

scheme equalizes the risk contribution of the five systemic-risk categories to the volatility

of the systemic-risk score across banks. Weights are so determined endogenously, satisfy the

supervisory preference about an equal weight of each category in determining the systemic-risk

score, and reduce banks’ lobbying on capping the most volatile categories since the weighting

of volatile categories will be lower than the weights attributed to less volatile categories.

Banks’ opportunity to optimally choose risk in response to this new regulatory framework is

now lower since weights are determined by the level of risk taken by the other banks. To

the best of my knowledge, this is one of the first research paper to propose a new weighting
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scheme for computing systemic-risk scores.2

The equally weighted risk contribution (ERC) method is a passive investment strategy

(Kolm, Tütüncü, and Fabozzi, 2014), intensively used in portfolio management with the

bloom of smart beta portfolios. These smart beta approaches include alternative-weighted

portfolios where the risk of the portfolio is more effectively managed than in the equally

weighted portfolio. The main advantage of such a risk-parity method is to minimize the total

distance between all the risk contributions of each asset. To achieve this goal, when the risk

contribution of the ith asset to the risk (volatility) of the portfolio is high, then the weighting

of this asset in the ERC portfolio is lower, all other things being equal. In contrast, if the risk

contribution is low, then the weighting of this asset in the ERC portfolio increases.

I provide a theoretical foundation to discriminate between several systemic-risk scores

and to argue that my smart systemic-risk scores offer a coherent alternative to the official

methodology. The BCBS considers systemic-risk scores as a loss-given-default (LGD) concept

rather than a probability of default (PD) concept (BCBS, 2011) since it aims to evaluate the

potential impact of a global bank’s failure on the financial system rather than the likelihood

of such a default. The larger the systemic footprint of the bank on the system is, the higher

its regulatory capital. Thus, a systemic-risk score is not a summary statistic (a single real

number) quantifying the level of risk in the economy. However, I show that the expected value

of the cross-sectional dispersion of systemic-risk scores over the years satisfies the axiomatic

framework introduced by Chen, Iyengar, and Moallemi (2013) and can be used as a global

systemic-risk measure, to reveal supervisors’ preferences for the best weighting scheme.3

2In León, Machado, and Murcia (2016), a systemic importance index based on a Fuzzy Logic Inference Sys-
tem (FLIS) is computed (FLIS converts expert judgment into quantitative values), whereas in León and Murcia
(2013) Principal Components Analysis (PCA) is used for aggregating their three systemic-risk categories.

3In this framework, the global systemic-risk measure cannot be used as a systemic-risk thermometer and
tracked over time (across scenarios).
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Using regulatory data for a sample of 79 global banks from 20 countries between 2014

and 2017, I compute two smart systemic-risk scores as an alternative to the BCBS Score,

one based on systemic-risk categories and the other based on systemic-risk indicators. The

two smart scores lead to similar (slightly higher) aggregate surcharges of regulatory capital

relative to the one emerging from the current framework. This means that changing the

weighting scheme slightly alters the composition of the risk buckets. I observe that banks

scoring high in a particular category, such as the four largest custodian banks in the world –

JP Morgan Chase, Citigroup, Bank of New York Mellon, and State Street – are not immune

to my approach.

This paper contributes to the literature on systemic-risk measurement (Acharya et al.,

2017; Acharya, Engle, and Richardson, 2012; Adrian and Brunnermeier, 2016; Brownlees and

Engle, 2017; Huang, Zhou, and Zhu (2009); and Yun, Jeong, and Park (2019)) by proposing

the smart systemic-risk score, where the ERC method is used to compute the weight of each

systemic-risk category. While the debate on how useful are systemic-risk measures based on

market data is at play (Idier, Lam, and Msonnier, 2009; Zhang et al., 2015, Brownlees et

al., 2018; and Löffler and Raupach, 2018), only few papers focus on the scoring approach

currently used by the regulator since 2011 (Benoit, Hurlin, and Pérignon, 2019). By analogy

to portfolio management (Lehar, 2005), the systemic-risk score can be viewed as a portfolio of

K risky categories (indicators), and its manager is the Basel Committee with a primary goal

of not favoring any particular facet of systemic risk. Thus, my paper contributes to a branch

that studies how to allocate systemic risk appropriately across contributors (Brunnermeier

and Oehmke, 2013; Brunnermeier and Cheridito, 2014; Gouriéroux and Monfort, 2013). The

use of the cross-sectional dispersion of systemic-risk scores as an aggregation function echoes
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the research of Menkveld (2017), where he proposes the standard deviation of aggregate loss

as the input of the crowding index rather than the average of aggregate loss.

The remainder of this paper is structured as follows. I present the scoring methodology

currently used by the BCBS in Section 2. In Section 3, I introduce the axiomatic framework

proposed by Chen, Iyengar, and Moallemi (2013) and apply it to the systemic-risk score used

by the regulator. This framework allows us to emphasize that the cross-sectional volatility of

systemic-risk scores is of utmost importance for expressing supervisors’ preferences. In Section

4, I describe the ERC method used to construct my smart systemic-risk scores (Section 4.1),

where I equalize the risk contribution of each systemic-risk component to the cross-sectional

volatility of these scores. I implement in Section 4.2 my smart systemic-risk scores using

actual regulatory data for a sample of 79 large, international banks from 2014 to 2017. I

conclude in Section 5.

2 Global systemically important banks

The systemic-risk scoring methodology proposed by the BCBS has been implemented to

identify SIFIs every year since 2012. It is based on 12 systemic-risk indicators, which are

combined into five main systemic-risk categories: size, interconnectedness, substitutability,

complexity, and the cross-jurisdictional activity of the bank (see Table 1 and BCBS, 2014b).

The aim of this section is to theoretically and empirically describe this scoring approach.

2.1 Assessment methodology

Perhaps the most natural dimension of systemic risk, the size of the financial institution, is

proxied by the measure of total exposures used in the Basel III leverage ratio (BCBS, 2014a).

It corresponds to the sum of the bank’s total assets, the gross value of its securities financing
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transactions, its credit derivatives and its counterparty risk exposures as well as some off-

balance-sheet commitments. The interconnectedness category comprises three indicators: the

bank’s intra-financial system assets, its intra-financial system liabilities, and its total amount

of securities outstanding. This category aims to capture the expected impact of the failure of a

bank on its business partners. The substitutability category describes the potential difficulties

that the bank’s customers would face in replacing the services provided by the bank if it failed.

The three related indicators are the bank’s payment activity, the assets under custody held

by the bank, and its total underwriting transactions in both debt and equity markets. The

complexity category merges three indicators based on over-the-counter derivatives, trading

and available-for-sale securities as well as illiquid and hard-to-value assets, known as Level

3 assets. The greater the bank complexity is, the higher the costs and the time needed to

resolve a failing bank. Finally, the cross-jurisdictional category combines two indicators of

cross-jurisdictional claims and liabilities. The rationale for accounting for cross-jurisdictional

activities is that banks with international activities allow shocks to be transmitted throughout

the global financial system.

Formally, each bank i, for i = 1, ..., N , is characterized by K = 5 systemic-risk cate-

gories denoted xi1, ..., xiK . Each category xik is obtained by combining Fk indicators (Xikf )

associated with category k, normalized by their sums:4

xik =
1

Fk

Fk∑
f=1

Xikf

N∑
i=1
Xikf

× 10, 000. (1)

As the categories xik are expressed in basis points, they can be interpreted as the market

shares of bank i for the various systemic-risk categories k (e.g., size, interconnectedness). The

4If I keep the same ordering for the categories as the BCBS, then F1 = 1 for the size category, F2 = 3
for interconnectedness, F3 = 3 for substitutability, F4 = 3 for complexity, and F5 = 2 for cross-jurisdictional
activity.
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indicators Xikf of non-Eurozone banks are converted into Euro using fiscal year-end exchange

rates to permit aggregation across currency zones.5 To allow banks to compute their own

scores, the regulator discloses, for each indicator, the sum across all banks,
∑N

i=1Xikf .

The systemic-risk score for bank i, denoted Si, is then defined as a weighted sum of these

K categories:

Si =
K∑
k=1

ωk × xik, (2)

where ωk corresponds to the weight (common to all banks) of category k in the systemic-risk

score. Note that by definition, all xik, for k = 1, ...,K, have an equal mean.

To give the same importance to each category, the BCBS considers an equally weighted

index with ωk = ω̄k = 1/K = 20%. Under this assumption, an increase of 10% of a given

category can be offset by a decrease of 10% in another category. In addition, the BCBS applies

a 5% cap to the substitutability category and no cap to the other categories.6 Accordingly,

the systemic-risk score becomes

S̄i =

K∑
k=1

ω̄k ×min(xik, capk), (3)

with capk = 5% for the substitutability category and capk = 100% for the other categories.

Once the systemic-risk scores of all financial institutions have been computed, those with

a score higher than a given threshold are qualified as SIFIs. This cut-off score has been

set to 130 since the SIFI list was published in 2012. With such a cut-off, any global bank

that contributes to more than 1.3% of the risk in the system is deemed to be SIFI. Then,

5Using spot exchange rates may have unintended consequences on the systemic score, especially in a period
of high volatility in exchange rates, as illustrated by Benoit, Hurlin, and Pérignon (2019).

6The BCBS acknowledges that the substitutability category has an abnormally high influence on the value
of the systemic-risk scores. On page 6 (BCBS, 2013), one can read that “The Committee has analysed the
application of the scoring methodology described above to three years of data supplied by banks. It has found
that, relative to the other categories that make up the G-SIB framework, the substitutability category has a
greater impact on the assessment of systemic importance than the Committee intended for banks that are
dominant in the provision of payment, underwriting and asset custody services.”
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following a bucketing approach, all SIFIs are allocated into four risk buckets of size 100, and

an additional empty bucket (bucket 5) is appended to the top.7 All banks included in a given

bucket face an extra capital charge that is added over and above existing capital requirements.

The magnitude of the extra capital charge ranges from 1% in bucket 1 to 3.5% in bucket 5.

The current scoring methodology exhibits several appealing features. For instance, fixing

the cut-offs through time allows banks to forecast the bucket they will be in next year and

forces them to reduce their risk indicators if they want to reduce their systemic-risk score.

Furthermore, adding an extra empty 3.5% bucket creates strong incentives for the highest-

scoring banks for not to increase their scores any further.

2.2 Empirical illustration

In this replication exercise, I implement the BCBS methodology between 2014 and 2017 by

collecting the values of the 12 indicators required to compute the five systemic-risk categories

at the end of the fiscal year.8 These regulatory data mainly come from bank websites. The

main difference between my approach and the replication exercise provided by Benoit, Hurlin,

and Pérignon (2019) is that I consider only the main sample of the G-SIB assessment method-

ology.9 This sample includes the largest 75 banks in the world, as determined by the Basel

III leverage ratio exposure measure, along with any banks that were designated as G-SIB in

the previous year but are not otherwise part of the top 75 (see Appendix A for the complete

list of banks considered each year).

I start by scaling each bank-level indicator by the sum of this indicator across the main-

7The score ranges are [130-229] for bucket 1, [230-329] for bucket 2, [330-429] for bucket 3, [430-529] for
bucket 4, and [530-629] for bucket 5. These cut-off values have remained fixed since the list of 2012 was
published.

8Most sample banks have their fiscal year-end on December 31, but some sample banks have it on October
31 (Canada) or March 31 (Japan and India).

9For further details, see the G-SIB assessment samples available at https://www.bis.org/bcbs/gsib/gsib_
assessment_samples.htm.
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sample banks considered by the BCBS.10 The current systemic-risk score can be computed

by using indicators or categories. The two sets of data produce the same BCBS systemic-risk

score S̄ due to the equal weighting scheme. I label as the BCBS Score the output of Equation

3, and I label as the uncapped BCBS Score the results provided by Equation 2 with ωk = ω̄k.

For ease of presentation, I mainly discuss the results for 2016 and 2017 since there are no

missing values in my SIFI assessment sample.11

Tables 1 and 2 report summary statistics, expressed in basis points (except for skewness),

on systemic-risk indicators (Panel A), categories (Panel B) and scores (Panel C). The mean

values are not informative since by construction, the sum of market shares across banks is

always equal to 10,000, leading to an average value of 131.58 basis points. This remark also

holds for systemic-risk scores, and the cut-off value (130 basis points) used by the supervisor

to separate the SIFI territory from the non-SIFI territory is close to this average value. Cross-

sectional volatilities across indicators and categories are heterogeneous. The substitutability

category appears to be the most volatile (standard deviation equal to 191 in 2017), which

explains why the Basel Committee applies a cap on this specific category. After the 5% cap

is applied, the standard deviation for this category decreases to 132. Such a winsorizing leads

to outliers’ disappearance in the BCBS Score; as a consequence, the maximum value for the

current BCBS Score is equal to 467, whereas it is 588 for the uncapped BCBS Score, which

could be removed in the next review of the assessment methodology (BCBS, 2018).

I report SIFI names with their respective BCBS Scores and risk buckets for 2016 and

2017 in Tables 3 and 4. First, I follow Section 2.1 and perfectly replicate the list of SIFIs

published since 2014 by the Financial Stability Board (FSB). Second, this allows us to identify

10Denominators are publicly available at http://www.bis.org/bcbs/gsib/denominators.htm.
11Results for the year 2014 and 2015 are available upon request.
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banks identified as SIFI based on supervisory judgement since their scores are below 130 basis

points. These banks are Groupe BPCE (126) and Nordea (123) in 2016 and Royal Bank

of Scotland (128) and Nordea (115) in 2017. Third, I confirm that the cap benefits only the

largest custodian banks in the world: JP Morgan Chase, Citigroup, Bank of New York Mellon,

and State Street. Fourth, the total extra capital requirement for systemic risk in 2017 is equal

to EUR 304.15 billion, as reported in Table 5. Despite the constant number of SIFIs since

2014 (30), this total increased by 37.15%. The reduction in regulatory capital (due to bucket

downgrade) produced by the cap on the substitutability category for the four custodian banks

is substantial, EUR 19.74 billion in 2017, and ranges from 4.31% in 2016 to 10.36% in 2014

of the total extra capital requirements.

Bostandzic and Weiß (2018) find that European banks contribute more to global systemic

risk than banks in the United States, even if they have a similar exposure to systemic crises,

and that stringent capital regulations decrease the average exposure of banks to systemic risk.

However, capital surcharges for G-SIBs are not always effective for managing systemic-risk

especially when the financial network topology is not taking into account (Poledna, Bochmann,

and Thurner, 2017). Battiston et al., 2012 show that a financial network can be most resilient

for intermediate levels of risk diversification, and not when this is maximal. Thus, re-shaping

the topology of financial networks is key for managing systemic risk, while the size of the

failing bank is important to trigger contagion, network characteristics are most important

for spreading losses through the system (Krause and Giansante, 2012). Banks that dominate

in terms of network centrality and connectivity are called “super-spreaders”. To solve this

“too-interconnected-to-fail” problem, Markose, Giansante, and Shaghaghi (2012) propose a

tax based on bank’s centrality. Alternatively, Alter, Craig, and Raupach (2015) show how
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to reallocate capital based on the centrality of a bank in the interbank market. However,

Yun, Jeong, and Park (2019) argue that the current five categories do not fully consider the

centrality of financial institutions within financial networks and propose the Rank measure to

address the “too-central-to-fail” issue.

While the scoring approach allocates systemic risk to individual financial institutions and

allows management of such systemic risk by setting additional capital requirements (micropru-

dential approach), no discussion has emerged about the use of an equal weighting scheme to

average systemic-risk categories even if capital requirements should be “system weighted” as

explained by Allen and Gale (2007) and Morris and Shin (2008) who highlight that capital

requirements that do not take into account the structure of interconnections among banks can

actually increase risk. As shown empirically in Tables 1 and 2, the cross-sectional dispersion

of systemic-risk categories (indicators) is not similar, and I argue that the supervisor should

care about it when setting up its scoring approach. Indeed, these cross-sectional dispersions

and the correlations between systemic-risk categories (indicators) are two key components for

capturing the risk topography and interconnections of the multiple facets of systemic risk.

3 Axioms for systemic-risk measures

To finalize its scoring approach, the BCBS has made several arbitrary choices. One of them

is related to the weighted average used to combine the K systemic-risk categories into an

individual systemic-risk score. As shown in Section 2, the supervisor uses an equally weighted

average, and this decision is of the first order when the regulator ranks banks based on

their scores. The aim of this section is to ground the choice of this weighting scheme in the

axiomatic framework proposed by Chen, Iyengar, and Moallemi (2013) to reveal supervisors’
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preferences.

3.1 Decomposition of systemic-risk scores

The economy, composed of a finite set of banks B and a finite set of scenarios Θ, is defined

by a matrix X ∈ R|B|×|K|×|Θ| where the quantity xθik is the market share of bank i for the

systemic-risk category k in scenario θ.12 I consider Xθ ∈ R|B|×|K| the matrix of outcomes

in scenario θ across all banks; then, Sθ
(N ;1)

= Xθ

(N ;K)
ω

(K;1)
corresponds to a systemic-risk score

where ω is a column vector of weights. I refer to Sθ ∈ R|B| as the cross-sectional profile of

a systemic-risk score across all banks of the economy in scenario θ. A realization of X in

scenario θ is given by the yearly output of Equation 1:

Xθ =



x11 x12 . . . x1k . . . x1K

x21 x22 . . . x2k . . . x2K
...

... . . .
... . . .

...
xi1 xi2 . . . xik . . . xiK
...

... . . .
...

. . .
...

xN1 xN2 . . . xNk . . . xNK



θ

.

Alternatively, one may prefer the observations coming from the indicators (rather than the

categories); in this case xik, is replaced by
Xikf
N∑
i=1

Xikf

, and the dimension of the column vector of

weights ω is now equal to the number of indicators (i.e., 12).

A particularity of this economy is that several systemic-risk scores can be computed by the

supervisory entity to accurately capture the systemic footprint of all banks belonging to the

system under scrutiny. Indeed, before focusing on the distribution (cross-sectional profile) of

systemic-risk score across all banks of the economy, the allocation of all systemic-risk facets to

the construction of a systemic-risk score matters. When alternative weights ω̂ are considered

for multiplying the X matrix, I end up with a new systemic-risk score Ŝ ∈ R|B|×|Θ|. Now, the

12For ease of presentation, I use θ as exponent to refer to a given scenario even if I have a total of T scenarios
labeled as θ1, θ2,· · · , θt, · · · , θT .
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quantity Ŝθi is the systemic-risk score of bank i in scenario θ when ω̂ is used for combining

the multiple facets of systemic risk.

Let us define the following notation to describe the cross-sectional profile of systemic-risk

scores: the column vector 1B ∈ R|B| denotes a cross-sectional score profile in a scenario where

each bank has the same score. This occurs when all systemic-risk scores are equal to
N∑
i=1
Sθi /N

and echoes the clone property of Brunnermeier and Cheridito (2014). Similarly, the vector

1Θ ∈ R|Θ| denotes a column vector of ones in all scenarios. The matrix IS , 1B1>Θ ∈ R|B|×|Θ|

denotes a systemic-risk score that is identical for each bank in each scenario. Alternatively,

the matrix IBK ∈ R|B|×|K|×|Θ| denotes an economy where the market shares X across all

banks and categories are identical. Regardless of the column vector of weights ω used, when

IBK is true then 1B is satisfied, the reverse is not true.

My model, illustrated in Figure 1, describes the choice faced by the supervisor about

the tuning of the column vector of weights. In this general example, the supervisor should

be able to determine which vector of weights he prefers among ω, ω̂ and ω̄ to compute the

systemic-risk score. To answer this question, I introduce the axiomatic framework of Chen,

Iyengar, and Moallemi (2013), which defines a global systemic-risk measure as follows: A global

systemic-risk measure is a function ρ : R|B|×|Θ| → R that satisfies the following conditions

for all systemic-risk scores S, Ŝ, S̄ ∈ R|B|×|Θ| of a given economy with N banks exposed to

several scenarios:

(i) Monotonicity : If S ≥ Ŝ, then ρ (S) ≥ ρ
(
Ŝ
)

.

(ii) Positive homogeneity (of degree one): For all nonnegative scalars α ≥ 0, ρ (αS) = αρ (S).

(iii) Preference consistency : Define a partial order �ρ on cross-sectional score profiles as
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follows: Sθ �ρ Ŝθ, i.e., Ŝθ is preferred to Sθ, iff ρ
(
Sθ1>Θ

)
≥ ρ

(
Ŝθ1>Θ

)
. Suppose that

∀ θ ∈ Θ, Sθ �ρ Ŝθ. Then, ρ (S) ≥ ρ
(
Ŝ
)
≥ ρ (IS ).

(iv) Convexity :

(a) Outcome convexity : Suppose S = αŜ + (1 − α)S̄, for a given scalar 0 ≤ α ≤ 1.

Then, ρ (S) ≤ αρ
(
Ŝ
)

+ (1− α)ρ
(
S̄
)

(b) Risk convexity : Suppose ρ
(
Sθ1>Θ

)
= αρ

(
Ŝθ1>Θ

)
+ (1 − α)ρ

(
S̄θ1>Θ

)
, ∀ θ ∈ Θ and

for a given scalar 0 ≤ α ≤ 1. Then, ρ (S) ≤ αρ
(
Ŝ
)

+ (1− α)ρ
(
S̄
)
.

(v) Normalization: ρ (IS ) = 0.

The conditions for a global systemic-risk measure can be motivated as follows: The mono-

tonicity condition (1) reflects that if one score S has systematically larger values in every

scenario than another score Ŝ, the former score is less preferred. The positive homogene-

ity condition (2) requires that the global systemic-risk measure increase in proportion to the

scale of the systemic-risk scores.13 The preference consistency condition (iii) reveals the su-

pervisor’s preferences over cross-sectional profiles of systemic-risk scores across scenarios. The

convexity conditions (iv) highlight the benefits of diversification, and the risk of a combina-

tion of two systemic-risk scores is always lower or equal to the two individual risks of the

cross-sectional profiles. The normalization condition (v) requires the global systemic risk of

identical systemic-risk scores for each bank in each scenario to be equal to zero. This con-

venient choice of scaling underlines a pitfall of the current methodology arising when banks

are clones since no banks may survive to a large systematic shock (Acharya and Yorulmazer,

13These first two conditions mathematically hold but are not particularly relevant in the regulatory scoring
approach since by construction, the sum of all market shares across banks is equal to 100% for each scenario
θ ∈ Θ, regardless of the systemic-risk score used. Thus, multiplying a cross-sectional profile of systemic-risk
score Sθ by α does not make sense due to the normalization process defined in Equation 1.
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2007; Wagner, 2010). In this case, all systemic-risk scores are similar, making it impossible

for the supervisor to designate SIFIs.

Chen, Iyengar, and Moallemi (2013) state in their Theorem 1 that any global systemic-

risk measures ρ : R|B|×|Θ| → R admit a decomposition equivalent to the choice of a base

(univariate) risk measure η : R|Θ| → R, and of an aggregation function Λ : R|B| → R. In my

setting, this decomposition has the following form:

ρ(S) = (η ◦ Λ) (S) , η
[
Λ
(
Sθ1
)
,Λ
(
Sθ2
)
, . . . ,Λ

(
SθT

)]
, ∀ S ∈ R|B|×|Θ|, (4)

where Λ is the aggregation function over the cross-sectional profiles of systemic-risk scores S

in each scenario. Once each cross-sectional profile in a single scenario is aggregated into a

real number, then the univariate risk measure η is run on these aggregated outcomes across

scenarios. The base risk measure η is a coherent risk measure since it satisfies all the axioms

of Artzner et al. (1999).14 In contrast, the aggregation function Λ satisfies the conditions of

monotonicity, positive homogeneity, convexity and normalization but not the cash invariance

condition.

3.2 Preferences based on cross-sectional dispersion

To apply a global systemic-risk measure to a given systemic-risk scores, a supervisor must deal

with both the cross-sectional profile of scores across banks and the distribution of aggregated

outcomes across scenarios.

The most natural way to aggregate individual systemic-risk scores into a real number is to

use the sum operator. However, in the regulatory framework,
N∑
i=1
Sθi =

N∑
i=1
Ŝθi = . . . =

N∑
i=1
S̄θi =

10, 000 and does not allow discrimination between a given systemic-risk score. Since the total

number of banks N is the same for each systemic-risk score, taking the first moment of this

14In Appendix B, I provide an illustration of such a coherent risk measure with the volatility.
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cross-sectional distribution is also not informative. Looking at the second moment is thus the

next logical candidate. The volatility of the systemic-risk score across banks satisfies all the

axioms of the aggregation function and provides meaningful information about the dispersion

of such a score. An overly high dispersion means that some financial institutions contribute

in a large (and, conversely, small) measure to the risk of the system, whereas low dispersion

leads to more similar financial institutions that are potentially more substitutable in case of

systemic bankruptcy.

I propose the following function to aggregate cross-sectional profiles of systemic-risk scores

in a given scenario into a scalar:

ΛDisp.(S
θ) = σSθ , ∀ Sθ ∈ R|B|. (5)

This aggregation function considers the volatility of systemic-risk scores across banks as an

additional source of information, capturing the heterogeneity of the financial system. I assume

there is a given distribution p ∈ R|Θ|+ over the space of scenarios T , and I define the individual

risk measure to be the expectation (the first moment):

ηExp. = p>y, (6)

ηExp. = E
[
y
]
, ∀ y ∈ R|Θ|. (7)

Then, the global systemic-risk measure is given by

ρDisp.(S) = ηExp.

[
ΛDisp.

(
Sθ1
)
,ΛDisp.

(
Sθ2
)
, . . . ,ΛDisp.

(
SθT

)]
, (8)

ρDisp.(S) = E
[
σSθ1 , σSθ2 , . . . , σSθT

]
, ∀ S ∈ R|B|×|Θ|. (9)

Supervisor preferences are based on the expectation of the cross-sectional volatility of systemic-

risk scores across scenarios. In the regulatory framework, a scenario corresponds to a year,

17



and I assume that each scenario has the same probability p of occurrence, leading to a simple

average of the cross-sectional dispersion of systemic-risk scores over the years.

To determine the supervisor’s preference between the universe of scores, S, Ŝ, . . . , S̄, I must

compute and compare ρDisp.(S), ρDisp.(Ŝ), . . . , ρDisp.(S̄) in order to select the lowest value as

established in the preference consistency axiom. These averages of dispersion are affected

only by the choice of column vector ω to compute S since input matrix X is identical for all

systemic-risk scores. The weighting scheme used to compute the systemic-risk score is thus

the cornerstone of my setting.

The preference consistency condition also implies independence from irrelevant alternatives

(see Kreps, 1988). One of the primary goals of the Basel Committee is not to favor any

particular facet of systemic risk. This means that finding the weights that minimize the

expected value of the cross-sectional volatility of systemic-risk scores over the years is not

the best solution since it will load heavily on the lowest volatile categories (indicators). In

the same vein, finding the weights that maximize the utility function of the supervisor is

not viable since it implies knowing such a utility function and will not guarantee an equal

contribution of each systemic-risk facet.

By looking at the cross-sectional dispersion, the regulator can gauge whether banks form

a crowd around the cut-off value separating the SIFI territory from the non-SIFI territory.

A throng of banks around this frontier means than banks are similar and are potentially

perfectly substitutable which is a good for financial stability. It is valuable to track and limit

dispersion of banks within a financial system to avoid banks with high risk profiles. Indeed,

high risk banks are also keener on lobbying regulators, and maximizing banks separateness is

risky since it creates regulators’ overexposure and no incentive for high risk banks (extremely
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specialized) to reduce their systemic footprint. No or low dispersion also implies that there is

no informational content in the systemic risk scoring methodology anymore. Thus, systemic

risk should be measured differently since if a large systematic shock occurs when banks are

similar, no banks is immune and the financial system moves from a “too-big-to-fail” issue to

a “too-many-to-fail” problem where there is no surviving banks to acquire failing banks.

4 Alternative weighting scheme

In this section, I borrow from the portfolio management literature and propose an alternative

to the naive equally weighted average of categories (indicators) to compute systemic-risk

scores. Such a 1/K portfolio offers attractive features, such as the fact that this portfolio

is not easily outperformed by optimal portfolios, as illustrated by DeMiguel, Garlappi, and

Uppal (2009). However, the emergence of smart beta exchange-traded funds (ETFs), using

alternative index construction rules, paves the road to new diversification strategies that are

ideal for managers who want to minimize the risk of their portfolios.

4.1 The ERC method

Based on Equation 9 and supervisory statements, the BCBS plays the role of a manager

who wants to select column vector of weights ω̂ satisfying both (1) low expectations of cross-

sectional dispersion of systemic-risk scores over the years and (2) equal contribution of each

systemic-risk categories (indicators).

The ERC method (Qian, 2005) displays such characteristics. First, it equalizes the risk

contribution of each systemic-risk component to the cross-sectional volatility of the systemic-

risk scores. Second, as shown theoretically by Maillard, Roncalli, and Tëıletche (2010) with

portfolios, the volatility of a systemic-risk score based on ERC weights is systematically lower

19



than or equal to the current volatility of the BCBS systemic-risk score based on equal weights.

My new systemic-risk score based on this ERC weighting scheme is dubbed as the smart

systemic-risk score.

To describe the ERC method, I first define the marginal risk contribution and the total risk

contribution. Let σ2
k be the variance of category k, σkl be the covariance between categories

k and l, and Ω be the covariance matrix. The volatility of the systemic-risk score is given

by σS =
√
ω′ Ω ω =

√
K∑
k=1

ω2
k σ

2
k +

K∑
k=1

K∑
l 6=k
ωk ωl σkl where ω = (ω1, ω2, . . . , ωK) is the column

vector of weights. The marginal risk contribution for the kth category, δωkσS , is defined as

δωkσS =
δσS
δωk

=

ωk σ
2
k +

K∑
l 6=k
ωl σkl

σS
. (10)

The marginal risk contribution of category k gives the change in the volatility of the score

induced by a small increase in the weight of this component. The risk of the systemic-risk

score is then equal to the sum of the risk contributions of the K categories:

σS =

K∑
k=1

(ωk × δωkσS) . (11)

In a risk-parity strategy-based portfolio, the risk contribution of the kth category (ωk × δωkσ)

is equal to a given target bk where
K∑
k=1

bk = σS , and 0 < bk < σS . The ERC strategy is a

special case of the risk-parity method where bk = bl = b for all k, l. Based on Equation 11, the

risk of the smart systemic-risk score Ŝ is then equal to σŜ = K × b, and the optimal weights

satisfying these constraints are defined as follows:

ω̂ =

{
ω ∈ [0, 1]K :

K∑
k=1

ωk = 1, ωk × δωkσS = b =
σS
K
∀ k ∈

[
1, ...,K

]}
(12)

To compute the smart systemic-risk score corresponding to the risk-balanced score, I must

equalize the risk contribution of each systemic-risk category. I must verify that the weights
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of each category are between 0 and 1 and then sum to 1. Then, the smart systemic-risk score

is simply given by

Ŝi =
K∑
k=1

ω̂k × xik, (13)

Due to the endogeneity of the optimization program, since the volatility of the score (σS)

is a function of the weighting parameters (ω), there is no closed-form solution when K > 2.

I use a numerical algorithm to find a solution to the program described in Equation 12.

To sum up, the smart systemic-risk score is located between the current BCBS Score

(1/K) and the minimum-variance score.15 The smart score coincides with the BCBS Score

only when all volatilities are the same for each category. This happens especially when market

shares X are equal to the matrix IBK or when X is standardized, as proposed by Benoit,

Hurlin, and Pérignon (2019). As a consequence, based on the axioms provided in Section 3,

the smart score Ŝ given by Equation 13 is systematically preferred by the supervisor to the

current (uncapped) BCBS Score, S̄ =
K∑
k=1

ω̄k × xik, since ρDisp.(S̄) ≥ ρDisp.(Ŝ).

A weighting scheme based on PCA could be an alternative as suggested by León, Machado,

and Murcia (2016), but PCA is not a solution to correct the current statistical bias of the

BCBS Score since the first component of a PCA (based on a covariance matrix) mainly loads

on the most volatile categories. In contrast, normed PCA (based on correlation matrix)

requires standardized categories as in Benoit, Hurlin, and Pérignon (2019) to address this

bias, and loadings can be used as weighting scheme. I do not consider these normed PCA-

based weights to construct an additional benchmark since the comparison with systemic-risk

score based on ERC weights will systematically dominate when supervisor preferences are

expressed as the expected value of the cross-sectional dispersion of systemic-risk scores over

15The minimum-variance score is not a relevant alternative, as explained in Section 3.2.
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the years.

4.2 Empirical analysis

The smart systemic-risk score can be computed by using indicators or categories. While the

two sets of data produce the same BCBS Score S̄, two distinct smart systemic-risk scores Ŝ

can be computed. They are labeled the ERCcat Score and the ERCind Score and correspond

to Equation 13. Their discrepancies are due to the use of 2 different covariance matrices in the

optimization program described in Section 4.1. These two sets of ERC weighting parameters

emphasize the importance of the relationship (covariance) between indicators, and between

categories.

To verify empirically that ρDisp.(S̄) ≥ ρDisp.(Ŝ), I reduce my sample of banks to the

61 banks belonging to the main sample over the study period for which I have no missing

data.16 As expected, the cross-sectional volatility of the ERCcat Score and the ERCind Score

is systematically lower than the volatility of the uncapped BCBS Score, as detailed in Table 5.

Smart scores are systematically compared to the uncapped BCBS Score since the winsorizing

of the substitutability category to compute the BCBS Score currently in use modifies the X

matrix, leading to an unfair comparison. When averaging the cross-sectional volatilities, I end

up with the following results: ρDisp.(S̄) = 123 for the uncapped BCBS Score, ρDisp.(Ŝ) = 113

for the ERCcat Score, and ρDisp.(Ŝ) = 118 for the ERCind Score. This empirically confirms

that smart scores are indeed preferred by the supervisor (S̄ �ρDisp. Ŝ). In other words, ERC

weights should be used rather than equal weights for computing systemic-risk scores.

The summary statistics on smart scores reported in Tables 1 and 2 confirm that smart

16I do so to provide a fair comparison. However, since cross-sectional profiles of systemic-risk scores are
aggregated into a scalar (the volatility) for each year, a different number of banks over the years could be
allowed.
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scores exhibit similar moments to the uncapped BCBS Score. In 2017, the cross-sectional

volatility of the ERCcat Score (104 basis points) and the ERCind Score (107) is lower than

the volatility of the uncapped BCBS Score (111) and quite close to the volatility of the BCBS

Score (103). This shows that there is no need to put a cap on the substitutability category to

reach a similar standard deviation and skewness since these two moments of the ERCcat Score

and of the BCBS Score are very close. In addition, the maximum values are less affected;

in 2017, the highest values are 536 and 567 for the ERCcat Score and the ERCind Score,

respectively. These values are slightly lower than the maximum uncapped BCBS Score (588)

compared to 467 for the BCBS Score.

Computing the risk contribution of each category to the cross-sectional volatility of the

BCBS Score highlights the discrepancies between the marginal contribution of each category

(as in Equation 10) since an equally weighted average is used. The top panel of Figure 2 shows

that the marginal contribution of each category is proportional to its cross-sectional volatility,

as reported in Panel B of Table 2. The higher the cross-sectional volatility of a category is,

the larger its marginal contribution in the cross-sectional volatility of the BCBS Score. For

instance, the risk contribution of the substitutability category is 32 basis points out of the

111 basis points of the volatility of the uncapped BCBS Score, corresponding to 28% of the

total risk. When capping the substitutability category, the standard deviation of the BCBS

Score is now equal to 103 basis points, and the substitutability category accounts for 22 basis

points, corresponding to 22% of the total risk. In this case, the complexity category has the

larger risk contribution, corresponding to 26% (26.32/103.17) of the standard deviation of the

BCBS Score. The results are similar for the systemic-risk indicators, as displayed in the top
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panel of Figure 3.17

In contrast, the risk contribution of each category (indicator) to the risk of the smart

score is equal by definition (see the top panel of Figure 2). To reduce the risk contribution of

the most volatile categories, the weight applied to these categories for computing the smart

systemic-risk score shrinks, whereas the weight of the less volatile categories increases their

risk contribution, as illustrated in the bottom panel of Figures 2 and 3. The sum of all these

risk contributions (i.e., the cross-sectional volatility of the systemic-risk score) for the smart

score based on categories (103) or based on indicators (107) are lower than the one from the

uncapped BCBS Score (111), which empirically illustrates the fact that the volatility of my

smart score is systematically lower than the volatility of the BCBS Score.

By setting smaller weights for the most volatile categories, I create positive incentives

for banks, especially non-SIFIs, to increase their risk taking in these categories without be

heavily (and quickly) penalized by additional capital requirements. I argue that this pattern

may increase financial stability since banks will become more substitutable by allowing some

banks to increase their market shares in specialized activities, such as the custody services.

In contrast, banks will tend to reduce their risk taking in an area where there is smaller

cross-sectional dispersion because such a risk category (indicator) mechanically carries more

weight in the final score.

I display the evolution of the risk contribution of each category between 2014 and 2017

with the BCBS weights in Figure 4 and with the ERCcat weights in Figure 5. The cross-

sectional volatility of the uncapped BCBS Score has decreased over time because the risk

contributions of the interconnectedness, substitutability, complexity, and cross-jurisdictional

17The risk contribution of the total exposures indicator (size category) to the volatility of the BCBS Score
appears abnormally high due to its weight of 20%, whereas the weights of the other indicators are at least half
as large.
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activity have dropped by 19.61%, 14.76%, 22.95%, and 10.57%, respectively, whereas the risk

contribution of the size has increased by 1.27%. From 2014, the risk of the ERCcat Score has

also decreased since the risk contribution of each category decreases by 12.98%. The weighting

parameters for each category used to compute these risk contributions are plotted in Figure

6. To ensure an equal risk contribution over the years across categories, the weight of the size

becomes smaller, whereas the weight of the interconnectedness grows rather than remaining

constant as with the other three categories. In other words, the volatility of the size category

has increased whereas the volatility of the interconnectedness has decreased over the year.

I show in Figure 7 the yearly evolution of the risk contribution of each category with the

ERCcat weights when these parameters remain constant over time (parameters are set based

on 2014 data). This out-of-sample analysis confirms a higher risk contribution for the size

category at the end of the period compared to the beginning. I observe a severe drop in

the risk contributions of interconnectedness and complexity between 2016 and 2017. This

figure confirms that the current systemic-risk methodology does not address the “too-big-

to-fail” issue at the system level. While the size of most American and European banks

has decreased since 2014, this decrease has been compensated for by a boom in the size

of Chinese bank, among others, leading to higher risk contributions from the size category.

This observation illustrates perfectly the purpose of the current regulation, which only ranks

financial institutions without monitoring the risk at the system level.

I display all systemic scores for 2016 and 2017 in descending order in Figures 8 and 9,

and I complete Tables 3 and 4 with the SIFIs identified by the ERCcat Score and the ERCind

Score. In 2016, the ERCcat Score identifies 29 SIFIs, whereas the ERCind Score identifies

30 SIFIs. In both cases, Groupe BPCE is directly identified as SIFI, but Nordea is in the
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non-SIFI territory. Few bucket changes are observed. With the ERCcat Score, Bank of China

is now in bucket 2 rather than bucket 1, whereas BNP Paribas goes down one bucket, saving

0.5% of regulatory capital. With the ERCind Score, BNP Paribas also goes to bucket 2 rather

than bucket 3, Industrial Bank is now labeled as a SIFI, and the largest custodian bank (JP

Morgan) no longer enjoys the cap on the substitutability category since its ERCind Score is

equal to 564, corresponding to risk bucket 5. In 2017, neither of the two banks (Royal Bank

of Scotland and Nordea) added by supervisory judgement are identified by my smart scores.

However, three new banks go to the SIFI territory based on the ERCind Score: Industrial

Bank, China Misheng Bank and Groupe BPCE (also identified as SIFI by the ERCcat Score).

With the ERCcat Score, two banks must reduce their regulatory capital (Bank of China and

Deutsche Bank), whereas one bank has to increase its regulatory capital (JP Morgan). With

the ERCind Score, I observe 6 bucket changes. JP Morgan and Citigroup go up one bucket

and do not benefit from the cap, and Credit Suisse also has to increase its regulatory capital,

whereas I observe a reduction for Bank of America, Bank of China and Deutsche Bank. All

these bucket changes generate an appreciation of the total surcharge of capital requirements

compared to the current one, as reported in Table 5. For example, in 2017, the aggregated

surcharge is EUR 309.61 billion for the ERCcat Score and EUR 318.89 billion for the ERCind

Score compared to EUR 304.15 billion for the BCBS Score.

As theoretically set in Section 3, when supervisor preferences are based on the expectation

of cross-sectional dispersion of systemic-risk scores over the years, smart scores are preferred

to the BCBS Score (uncapped). In Figures 10 and 11, I illustrate this point by displaying

the cross-sectional mean and volatility of four systemic-risk scores and of the five (twelve)
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systemic-risk categories (indicators) for 2017.18 As an alternative to smart scores and BCBS

Scores, I compute both a score minimizing its cross-sectional variance (MinVar Score) and

a score maximizing the usual utility function (Opt. Score).19 As expected, smart scores

have a lower volatility than the BCBS Score but a higher volatility than the MinVar Score.

When constructing systemic-risk scores based on categories, I observe that the MinVar Score

corresponds to the interconnectedness category, which illustrates perfectly the fact that this

alternative is not relevant since only one category contributes to the construction of this

score. An additional irrelevant score is disclosed with the Opt. Score corresponding to the

intersection of the utility curve and the efficient frontier for a given aversion coefficient. Indeed,

reaching the higher level of utility does not guarantee (1) that each category contributes with

the same importance to the systemic-risk score and (2) that the volatility of the Opt. Score

is lower than the volatility of the smart score, as shown in Figure 11. Finally, by assuming

that the supervisor owns the same utility function as an investor, I provide another advantage

with my smart score, which is that its utility is always larger than that of the (uncapped)

BCBS Score.

5 Conclusion

This paper contributes to the literature on systemic-risk measurement by proposing a smart

systemic-risk score where the ERC method is used to compute the vector of weights used

for the computation of systemic-risk scores. While thousands of vectors of weights can be

proposed, I argue that applying the axiomatic framework of Chen, Iyengar, and Moallemi

(2013) to the scoring approach allows discrimination between these alternative weighting

18Figures for 2014, 2015, and 2016 are similar.
19The utility function is given by E

(
S
)
− φ

2
σ2
S where the utility increases with the cross-sectional mean of

the systemic-risk score and decreases with the cross-sectional volatility of the score weighted by half of the
aversion coefficient φ.
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schemes. Based on my framework, the best weighting scheme is the one (1) providing the

lowest expectation of cross-sectional dispersion of systemic-risk scores over the years and (2)

satisfying the primary goal of the BCBS of not favoring any particular facet of systemic risk.

The ERC method can be applied consistently to systemic-risk categories or indicators.

Weights are endogenously determined and take into account the volatility of each component

but also their correlation, as suggested by the Association of Supervisors of Banks of the

Americas (ASBA) in 2017. Such an approach is also perfectly designed for dealing with the

inclusion of additional indicators, such as the forthcoming trading volume indicator in the sub-

stitutability category (BCBS, 2018), since weights do not have to be determined exogenously

via supervisory judgement. Letting the data speak in computing systemic-risk scores does not

imply systematically adjusting this vector of weights on a yearly basis. The vector of weights

could be modified at each revision of the methodology similar to the bucket thresholds, which

remain fixed for several years.

This methodology, which does not require data transformation, identifies the same SIFIs

as the current systemic-risk score, but due to bucket changes, the capital surcharge required

by my smart scores is slightly larger. The main advantage of these scores based on the ERC

method is that an increase of 10% in a given category can no longer be offset by a 10% decrease

in another category. Consequently, banks’ incentives to manage their systemic footprint are

now restored since my smart scores increase incentives for banks to reduce (increase) their risk

contribution in categories (indicators) characterized by a smaller (larger) dispersion of banks

(see Laffont and Tirole, 1993; Laffont and Martimort, 2001, for the theory of incentives).

The output provided by the ERC method is particularly interesting for the supervisor

since it equalizes the risk contribution of each systemic-risk component to the cross-sectional
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volatility of the systemic-risk score as required by the regulator. In addition, banks scoring

high on a highly volatile category are less penalized than with the uncapped BCBS Score since

the weight on such a category or indicator is lower than the 1/K weight. Ad hoc adjustment

like the cap of the substitutability is no longer required, and there is no need to find alternative

methodologies for the substitutability category anymore (BCBS, 2018).

While the scoring approach allocates systemic risk to individual financial institutions to

manage systemic risk by setting additional capital requirements for internalizing negative

externalities, no systemic-risk measure at a system-wide level is provided by the supervisor.

Every year, the sum of each systemic-risk score across banks is equal to 10,000. The larger

the market share of a bank within the system is, the higher its regulatory capital. However,

aggregate regulatory capital through time does not necessarily mean that a systemic event

is more likely. It just means that the cost to the system will be larger. Regardless of these

negative externalities on society that are now internalized by financial institutions, I would

like to know whether the financial system – and, as a result, the global economy – is more

stable now than it was a few years ago. I leave this question open for future research.
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Löffler, G., and P. Raupach (2018): “Pitfalls in the Use of Systemic Risk Measures,” Journal of

Financial and Quantitative Analysis, 53(1), 269–298. 5
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Table 1: Summary statistics (2016)

This table reports summary statistics expressed in basis points (except for skewness) on the 12 systemic-
risk indicators in Panel A, on the five systemic-risk categories plus the substitutability category capped
at 5% in Panel B, and on the four systemic-risk scores (BCBS Scores uncapped and capped and the
two smart systemic-risk scores) in Panel C.

Panel A: Systemic-risk indicators
Mean Median Std Dev. Skewness Minimum Maximum

1. Total exposures 131 94 103 1.5 32 463
2a. Intra-financial system assets 134 109 100 0.9 12 451
2b. Intra-financial system liabilities 133 104 102 0.8 2 415
2c. Securities outstanding 131 113 91 1.2 10 425
3a. Payments activity 130 60 210 3.5 0 1,160
3b. Assets under custody 130 39 313 3.9 0 1,686
3c. Underwriting activity 131 56 180 1.9 0 730
4a. OTC derivatives 131 37 206 1.8 0 798
4b. Trading and AFS securities 131 67 157 2.2 1 839
4c. Level 3 assets 132 43 177 1.6 0 680
5a. Cross-jurisdictional claims 130 71 150 1.8 0 766
5b. Cross-jurisdictional liabilities 131 84 145 1.6 0 705

Panel B: Systemic-risk categories
Mean Median Std Dev. Skewness Minimum Maximum

1. Size 131 94 103 1.5 32 463
2. Interconnectedness 133 106 87 0.9 13 401
3. Substitutability 131 59 197 3.0 2 1,091
3. Substitutability (cap=5%) 113 59 131 1.7 2 500
4. Complexity 131 60 159 1.7 1 709
5. Cross-jurisdictional activity 131 81 146 1.7 0 735

Panel C: Systemic-risk scores
Mean Median Std Dev. Skewness Minimum Maximum

BCBS score (uncapped) 131 88 116 1.6 19 582
BCBS score 128 88 107 1.3 19 464
ERCcat score 131 93 108 1.4 23 527
ERCind score 132 91 112 1.6 21 563
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Table 2: Summary statistics (2017)

This table reports summary statistics expressed in basis points (except for skewness) on the 12 systemic-
risk indicators in Panel A, on the five systemic-risk categories plus the substitutability category capped
at 5% in Panel B, and on the four systemic-risk scores (BCBS Scores uncapped and capped and the
two smart systemic-risk scores) in Panel C.

Panel A: Systemic-risk indicators
Mean Median Std Dev. Skewness Minimum Maximum

1. Total exposures 132 94 102 1.6 32 466
2a. Intra-financial system assets 134 105 99 0.8 15 393
2b. Intra-financial system liabilities 133 104 105 0.8 1 430
2c. Securities outstanding 131 111 88 1.3 11 426
3a. Payments activity 131 66 191 3.3 0 1,199
3b. Assets under custody 132 43 304 3.9 0 1,650
3c. Underwriting activity 132 58 174 2.0 0 774
4a. OTC derivatives 132 41 201 1.8 0 797
4b. Trading and AFS securities 143 69 165 2.2 2 859
4c. Level 3 assets 132 59 164 1.6 0 770
5a. Cross-jurisdictional claims 133 84 146 1.7 0 754
5b. Cross-jurisdictional liabilities 132 81 148 1.8 0 771

Panel B: Systemic-risk categories
Mean Median Std Dev. Skewness Minimum Maximum

1. Size 132 94 102 1.6 32 466
2. Interconnectedness 133 109 83 0.9 23 411
3. Substitutability 131 63 191 3.0 2 1,103
3. Substitutability (cap=5%) 115 63 132 1.8 2 500
4. Complexity 135 61 150 1.5 5 654
5. Cross-jurisdictional activity 133 86 146 1.8 0 763

Panel C: Systemic-risk scores
Mean Median Std Dev. Skewness Minimum Maximum

BCBS score (uncapped) 133 99 111 1.6 19 588
BCBS score 130 99 103 1.3 19 467
ERCcat score 133 103 104 1.4 21 536
ERCind score 133 104 107 1.5 18 567
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Table 3: List of systemically important financial institutions (2016)

This table reports the risk-bucket number with its respective Financial Stability Board (FSB) cut-off scores (Column 1), the additional capital
requirement expressed as a percentage of risk-weighted assets (Column 2), the identity of the systemically important banks as identified by
the FSB in descending order (Column 3), by the smart systemic-risk scores based on categories in descending order (Column 4), and based on
indicators in descending order (Column 5) as of November 2016. The systemic-risk scores of all banks are reported in parentheses. A ∗ indicates
that the substitutability category of the bank is capped at 5%, and the systemic-risk score without this cap is also reported in parentheses. A
• indicates banks identified as SIFIs by supervisory judgement. The reported cut-off values are provided by the BCBS.

Bucket
Additional

BCBS Score (30) ERCcat Score (29) ERCind Score(30)
Capital

5
3.5% Empty Empty JP Morgan Chase (564)

[530-629]

4
2.5%

JP Morgan Chase* (464/583) JP Morgan Chase (527)
Citigroup (482)

[430-529] Citigroup* (430/495) Citigroup (454)

HSBC (417) HSBC (410) HSBC (395)
3

2.0%
Deutsche Bank (358) Deutsche Bank (332) Deutsche Bank (350)

[330-429] Bank of America (346) Bank of America (332) Bank of America (339)
BNP Paribas (330)

Barclays (308) BNP Paribas (320); Barclays (292) BNP Paribas (316); Barclays (307)
2

1.5%
Credit Suisse (285) Credit Suisse (277); Mitsubishi UFJ FG (275) Credit Suisse (302)

[230-329] Mitsubishi UFJ FG (270) ICBC (271) Wells Fargo (261)
Goldman Sachs (253) Wells Fargo (246) Goldman Sachs (258)
ICBC (252) Bank of China (243) Mitsubishi UFJ FG (256)
Wells Fargo (250) Goldman Sachs (240) ICBC (250)

Bank of China (224) China Construction Bank (223) Bank of China (217)
Morgan Stanley (213) Santander (213) Bank of New York Mellon (215)
China Construction Bank (210) Agricultural Bank of China (208) Morgan Stanley (214)
Société Générale (210) Société Générale (204) Société Générale (208)
Santander (202) Morgan Stanley (199) China Construction Bank (205)
UBS (199) UBS (194) UBS (202)

1
1.0%

Agricultural Bank of China (191) Bank of New York Mellon (187) Santander (196)
[130-229] Groupe Crédit Agricole (168) Groupe Crédit Agricole (175) Agricultural Bank of China (191)

Mizuho FG (168) Mizuho FG (168) Groupe Crédit Agricole (169)
Bank of New York Mellon* (161/227) Sumitomo Mitsui FG (166) State Street (162)
Royal Bank of Scotland (155) Unicredit Group (157) Sumitomo Mitsui FG (161)
Sumitomo Mitsui FG (155) Royal Bank of Scotland (154) Mizuho FG (160)
Unicredit Group (149) ING Bank (151) Unicredit Group (156)
State Street* (149/172) State Street (139) Royal Bank of Scotland (154)
ING Bank (141) Standard Chartered (136) ING Bank (141)
Standard Chartered (134) Groupe BPCE (131) Standard Chartered (135)
Groupe BPCE• (126) Groupe BPCE (132)
Nordea• (123) Industrial Bank (132)
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Table 4: List of systemically important financial institutions (2017)

This table reports the risk-bucket number with its respective Financial Stability Board (FSB) cut-off scores (Column 1), the additional capital
requirement expressed as a percentage of risk-weighted assets (Column 2), the identity of the systemically important banks as identified by
the FSB in descending order (Column 3), by the smart systemic-risk scores based on categories in descending order (Column 4), and based on
indicators in descending order (Column 5) as of November 2017. The systemic-risk scores of all banks are reported in parentheses. A ∗ indicates
that the substitutability category of the bank is capped at 5%, and the systemic-risk score without this cap is also reported in parentheses. A
• indicates banks identified as SIFIs by supervisory judgement. The reported cut-off values are provided by the BCBS.

Bucket
Additional

BCBS Score (30) ERCcat Score (29) ERCind Score(31)
Capital

5
3.5% Empty JP Morgan Chase (536) JP Morgan Chase (567)

[530-629]

4
2.5% JP Morgan Chase* (468/588) Citigroup (435)

[430-529]

HSBC (411) Citigroup (418) HSBC (387)
3

2.0%
Citigroup* (410/452) HSBC (396)

[330-429] Bank of America (340)
Deutsche Bank (334)

BNP Paribas (312) Bank of America (320); Deutsche Bank (311) Deutsche Bank (328); Bank of America (323)
Barclays (292) BNP Paribas (302); Mitsubishi UFJ FG (290) BNP Paribas (294); Barclays (290)

2
1.5%

Mitsubishi UFJ FG (287) ICBC (284) Mitsubishi UFJ FG (275)
[230-329] ICBC (268) Barclays (279) ICBC (264)

Goldman Sachs (255) China Construction Bank (261) Goldman Sachs (264)
China Construction Bank (252) Bank of China (247) Wells Fargo (254)
Wells Fargo (243) Goldman Sachs (246) China Construction Bank (253)
Bank of China (232) Wells Fargo (244) Credit Suisse (236)

Credit Suisse (229) Credit Suisse (220) Bank of China (225); Morgan Stanley (215)
Morgan Stanley (214) Morgan Stanley (201) Société Générale (204)
Société Générale (200) Société Générale (201) Bank of New York Mellon (200)
Santander (193) Santander (201) UBS (186)
Mizuho FG (187) Agricultural Bank of China (197) Sumitomo Mitsui FG (185)
UBS (185) Sumitomo Mitsui FG (191) Santander (184)

1
1.0%

Sumitomo Mitsui FG (181) Mizuho FG (187) Mizuho FG (182)
[130-229] Agricultural Bank of China (176) UBS (181) Agricultural Bank of China (175)

Groupe Crédit Agricole (161) Bank of New York Mellon (174) Groupe Crédit Agricole (160)
ING Bank (160) Groupe Crédit Agricole (166) State Street (160)
Bank of New York Mellon* (153/215) ING Bank (166) ING Bank (154)
State Street* (149/171) Unicredit Group (142) Industrial Bank (144)
Royal Bank of Canada (145) Royal Bank of Canada (141) Royal Bank of Canada (142)
Unicredit Group (135) State Street (138) Unicredit Group (139)
Standard Chartered (133) Standard Chartered (135) China Minsheng Bank (134)
Royal Bank of Scotland• (128) Groupe BPCE (131) Standard Chartered (133)
Nordea• (115) Groupe BPCE (131)
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Table 5: Cross-sectional volatility and capital surcharge

This table reports the cross-sectional volatility (expressed in percentage points) of systemic-risk scores
and the aggregate regulatory surcharge in capital (expressed in EUR billion) due to systemic risk in
2014, 2015, 2016, and 2017. For comparison, the reported cross-sectional volatilities are based on the
61 banks belonging to the main sample over the study period.

Year 2014 Year 2015 Year 2016 Year 2017

BCBS Score (uncapped) 132 125 119 114
Cross-sectional BCBS Score 120 114 109 105

Volatility ERCcat Score 120 116 110 105
ERCind Score 127 121 115 108

Aggregate BCBS Score (uncapped) 247.39 279.13 313.33 323.39
Regulatory BCBS Score 221.76 261.90 298.87 304.15

Capital ERCcat Score 241.57 285.65 301.83 309.61
Surcharge ERCind Score 215.68 271.10 312.60 318.89
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Figure 1: Model illustration

This figure describes the single economy of my framework composed of a finite set of banks B, a finite
set of future scenarios Θ, and a finite set of systemic-risk scores W . The scalar Sθti is the systemic-risk
score of bank i in scenario θt when the column vector of weights ω is used for multiplying the ith row
of matrix Xθt (which captures the multiple facets of systemic risk). Similarly, Ŝθti is the systemic-risk
score of bank i in scenario θt when the column vector of weights ω̂ is used.
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Figure 2: Risk contribution and weight for each systemic-risk category (2017)

This figure reports on top the risk contribution and on the bottom the weight of the five systemic-risk
categories used in the uncapped BCBS Score (dark blue bars) and in the ERCcat Score (yellow bars)
for the year 2017.
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Figure 3: Risk contribution and weight for each systemic-risk indicator (2017)

This figure reports on top the risk contribution and on the bottom the weight of the twelve systemic-
risk indicators used in the uncapped BCBS Score (dark blue bars) and in the ERCind Score (yellow
bars) for the year 2017.
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Figure 4: Evolution over time of the risk contribution for each systemic-risk category
with BCBS weights

This figure reports the yearly evolution over time (from 2014 to 2017) of the risk contribution of the
five systemic-risk categories with the current BCBS weights.
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Figure 5: Evolution over time of the risk contribution for each systemic-risk category
with ERC weights

This figure reports the yearly evolution over time (from 2014 to 2017) of the risk contribution of the
five systemic-risk categories when the ERC weights based on categories.
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Figure 6: Equal weights vs. ERC weights (category)

This figure reports the weights of each category used by the BCBS methodology (dark blue bars) to
construct the systemic-risk score, and the ERC weights for the year 2014 (light blue bars), 2015 (green
bars), 2016 (orange bars), and 2017 (yellow bars).
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Figure 7: Evolution over time of the risk contribution for each systemic-risk category
with constant ERC weights

This figure reports the yearly evolution over time (from 2014 to 2017) of the risk contribution of the
five systemic-risk categories when the ERC weights based on categories remain constant over time.
The ERC weights are set at the beginning of the period (2014).
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Figure 8: SIFI ranking based on smart systemic-risk (2016)

This figure displays the BCBS systemic-risk scores (blue circles) in descending order and the corre-
sponding smart systemic-risk scores as of 2016 (red triangles for the equally-weighted risk contribution
score based on categories and green square for the equally-weighted risk contribution score based on
indicators). The horizontal lines denote the cut-off values used to allocate banks into systemic-risk
buckets. Cut-off values are 130, 230, 330, 430, and 530.
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Figure 9: SIFI ranking based on smart systemic-risk (2017)

This figure displays the BCBS systemic-risk scores (blue circles) in descending order and the corre-
sponding smart systemic-risk scores as of 2016 (red triangles for the equally-weighted risk contribution
score based on categories and green square for the equally-weighted risk contribution score based on
indicators). The horizontal lines denote the cut-off values used to allocate banks into systemic-risk
buckets. Cut-off values are 130, 230, 330, 430, and 530.
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Figure 10: Mean-variance representation of systemic-risk scores based on categories
(2017)

This figure displays the cross-sectional mean and standard deviation of the 4 systemic-risk scores (op-
timal, minimum-variance, uncapped BCBS, and smart based on categories) and of the 5 systemic-risk
categories for the year 2017. Utility curves are also reported.
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Figure 11: Mean-variance representation of systemic-risk scores based on indicators (2017)

This figure displays the cross-sectional mean and standard deviation of the 4 systemic-risk scores (optimal, minimum-variance, uncapped BCBS,
and smart based on indicators) and of the 12 systemic-risk indicators for the year 2017. Utility curves are also reported.
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Appendix A SIFI assessment sample

This table displays the 79 banks appearing at least once in the main sample of the regulatory framework

between 2014 and 2017, along with their country of origin and the year in which I collect data. “Yes” or

“No” indicates whether the bank belongs to the main sample for the mentioned year. “NA” means

that the bank belongs to the main sample, but its data are not available.

Bank name Country 2014 2015 2016 2017

1. ANZ Australia NA NA Yes Yes
2. Commonwealth Australia NA NA Yes Yes
3. National Australia Bank Australia NA NA Yes Yes
4. Westpac Australia NA NA Yes Yes
5. Banco Bradesco Brazil NA NA No Yes
6. Banco Do Brasil Brazil NA NA Yes Yes
7. Caixa Economica Federal Brazil NA NA Yes Yes
8. Itaú Unibanco Brazil NA NA Yes Yes
9. Bank of Montreal Canada Yes Yes Yes Yes

10. Bank of Nova Scotia Canada Yes Yes Yes Yes
11. Canadian Imperial Bank of Commerce (CIBC) Canada Yes Yes Yes Yes
12. Royal Bank of Canada Canada Yes Yes Yes Yes
13. Toronto Dominion Canada Trust Canada Yes Yes Yes Yes
14. Agricultural Bank of China China Yes Yes Yes Yes
15. Bank of Beijing China No No Yes Yes
16. Bank of China China Yes Yes Yes Yes
17. Bank of Communications China Yes Yes Yes Yes
18. China Construction Bank China Yes Yes Yes Yes
19. China Everbright Bank China Yes Yes Yes Yes
20. China Guangfa Bank China NA Yes Yes Yes
21. China Merchant Bank China Yes Yes Yes Yes
22. China Minsheng Bank China Yes Yes Yes Yes
23. Citic China Yes Yes Yes Yes
24. Hua Xia Bank China Yes Yes Yes Yes
25. Industrial and Commercial Bank of China (ICBC) China Yes Yes Yes Yes
26. Industrial Bank China Yes Yes Yes Yes
27. Ping an Bank China Yes Yes Yes Yes
28. Shanghai Pudong China NA Yes Yes Yes
29. Danske Bank Denmark Yes Yes Yes Yes
30. BNP Paribas France Yes Yes Yes Yes
31. Crédit Mutuel France Yes Yes Yes Yes
32. Groupe BPCE France Yes Yes Yes Yes
33. Groupe Crédit Agricole France Yes Yes Yes Yes
34. Société Générale France Yes Yes Yes Yes
35. Commerzbank Germany Yes Yes Yes Yes
36. Deutsche Bank Germany Yes Yes Yes Yes
37. DZ Bank Germany Yes Yes Yes Yes
38. State Bank of India India Yes Yes Yes Yes
39. Intesa San Paolo Italy Yes Yes Yes Yes
40. Unicredit Italy Yes Yes Yes Yes
41. Mitsubishi UFJ FG Japan Yes Yes Yes Yes
42. Mizuho FG Japan Yes Yes Yes Yes
43. Nomura Holdings Japan Yes Yes Yes Yes
44. Sumitomo Mitsui FG Japan Yes Yes Yes Yes
45. Sumitomo Mitsui Trust Holdings Japan Yes Yes Yes Yes
46. The Norinchukin Bank Japan Yes Yes Yes Yes
47. Hana Bank Korea NA Yes Yes Yes
48. Kookmin Korea No No Yes Yes
49. Shinhan Korea NA Yes Yes Yes
50. ABN AMRO Netherlands Yes Yes Yes Yes
51. ING Bank Netherlands Yes Yes Yes Yes
52. Rabobank Netherlands Yes Yes Yes Yes
53. DNB Bank Norway Yes Yes No No
54. Sberbank Russia Yes Yes Yes Yes
55. DBS Bank Singapore Yes Yes Yes Yes
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Bank name Country 2014 2015 2016 2017

56. BBVA Spain Yes Yes Yes Yes
57. Criteria Caixa-Holding Spain Yes Yes Yes Yes
58. Santander Spain Yes Yes Yes Yes
59. Handelsbanken Sweden Yes Yes No No
60. Nordea Sweden Yes Yes Yes Yes
61. SEB Sweden Yes Yes Yes No
62. Credit Suisse Switzerland Yes Yes Yes Yes
63. UBS Switzerland Yes Yes Yes Yes
64. Barclays United Kingdom Yes Yes Yes Yes
65. HSBC United Kingdom Yes Yes Yes Yes
66. Lloyds United Kingdom Yes Yes Yes Yes
67. Royal Bank of Scotland United Kingdom Yes Yes Yes Yes
68. Standard Chartered United Kingdom Yes Yes Yes Yes
69. Bank of America United States Yes Yes Yes Yes
70. Bank of New York Mellon United States Yes Yes Yes Yes
71. Capital One United States No No Yes Yes
72. Citigroup United States Yes Yes Yes Yes
73. Goldman Sachs United States Yes Yes Yes Yes
74. JP Morgan Chase United States Yes Yes Yes Yes
75. Morgan Stanley United States Yes Yes Yes Yes
76. PNC United States Yes Yes Yes Yes
77. State Street United States Yes Yes Yes Yes
78. US Bancorp United States Yes Yes Yes Yes
79. Wells Fargo United States Yes Yes Yes Yes
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Appendix B The volatility as a coherent measure of risk

I use the axiomatic framework proposed by Artzner, Delbaen, Eber, and Heath (1999) to
show that the volatility is a coherent risk measure at a single-firm level.

Let X and Y be two random variables. With V(X) I indicate the variance of X, and with
σX =

√
V(X) its standard deviation (volatility).

• Monotonicity : If X is considered riskier than Y , then σX ≥ σY . In other words, X is
more volatile than Y .

• Positive homogeneity : For all nonnegative scalars α ≥ 0,
√

V(αX) = α
√

V(X).

• Sub-additivity : I know that corr(X,Y ) ∈ [−1; 1]

V(X + Y ) = V(X) + V(Y ) + 2 corr(X,Y ) σX σY , but max (corr(X,Y )) = 1, then

V(X + Y ) ≤ V(X) + V(Y ) + 2 σX σY

⇔ σ2
X+Y ≤ σ2

X + σ2
Y + 2 σX σY

⇔ σ2
X+Y ≤ (σX + σY )2

⇔
√
σ2
X+Y ≤

√
(σX + σY )2

⇔ σX+Y ≤ σX + σY

• Translation (Cash) Invariance: For all scalars c ∈ R,
√

V(X + c) =
√

V(X).

• Normalization: σ1 = 0.

When combining the notions of sub-additivity and positive homogeneity, I end up with the
notion of convexity : for a given scalar 0 ≤ α ≤ 1, then σα X+(1−α) Y ≤ α σX + (1 − α) σY .
Therefore, volatility satisfies the set of axioms of an aggregation function (see Definition 3 of
the aggregation function in Chen, Iyengar, and Moallemi (2013)).
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